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Extracellular vesicles (EV) consist of exosomes, which are released upon fusion of the
multivesicular body with the cell membrane, and microvesicles, which are released directly
from the cell membrane. EV can mediate cell–cell communication and are involved in many
processes, including immune signaling, angiogenesis, stress response, senescence, pro-
liferation, and cell differentiation.The vast amount of processes that EV are involved in and
the versatility of manner in which they can influence the behavior of recipient cells make
EV an interesting source for both therapeutic and diagnostic applications. Successes in
the fields of tumor biology and immunology sparked the exploration of the potential of
EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and
organ damage, and may partially explain the paracrine effects observed in stem cell-based
therapeutic approaches. The function and content of EV may also harbor information that
can be used in tissue engineering, in which paracrine signaling is employed to modulate
cell recruitment, differentiation, and proliferation. In this review, we discuss the function
and role of EV in regenerative medicine and elaborate on potential applications in tissue
engineering.
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INTRODUCTION
Regenerative medicine aims at the functional restoration of a dam-
aged, malfunctioning, or missing tissue. There are three main
approaches in regenerative medicine. The first approach is cell-
based therapies, where cells are administered to restore a tis-
sue either directly or through paracrine functions. The second
approach is often referred to as classical tissue engineering, and
consists of the combined use of cells and a bio-degradable scaffold
to form a tissue. Lastly, much progress has been made in material-
based approaches, which rely on bio-degradable materials, often
functionalized with cellular functions.

The first development in replacing malfunctioning tissues was
by transplanting organs, tissues, or cells. Over the course of the last
century vast improvements were made in the field of transplanta-
tion, starting with bone and cornea transplants at the beginning
of the twentieth century, followed by the first kidney transplanta-
tion in the 1950s (1–3). As transplantation techniques for other
organs developed over the following decades, the limiting factor for
these procedures shifted from technical limitations to the supply of
suitable organs and tissues. Besides shortage in supply, organ and
tissue transplantation have another major drawback: the risk of
immune rejection and the required chronic immunosuppression
treatment.

In response to these issues, research focused on strategies
that allow functional restoration of damaged tissues by cell-
free approaches or approaches using autologous cell and tissue
sources. Embracing the rapid developments in technology and

our understanding of biological processes, the field of regener-
ative medicine is focusing on a wide array of techniques and
approaches to restore tissue function. Suitable approaches depend
on the function and environment of the newly generated tis-
sue. For instance, in the replacement of insulin-producing cells in
patients with type-1 diabetes, there is little need for load-bearing
structures, but rather for structures mimicking the extracellular
matrix (ECM) like hydrogels, to retain and stimulate insulin-
producing cells (4). Heart valve replacements on the other hand
require materials that are able to withstand large forces in addi-
tion to high flexibility (5), but due to their direct contact with
a patients’ circulation also require the use of materials with high
hemocompatibility and low immunogenicity. Utilizing autologous
stem-, progenitor-, and tissue-specific cells to restore damaged tis-
sues may bypass the problem of immunogenic responses against
these implants. Following recent insights that the structural con-
tribution of stem cells to regenerated tissues is limited, and that
rather the stimulation of local healing processes plays an impor-
tant role (6–9), research has increasingly focused on the paracrine
hypothesis, investigating the stimulating factors released by these
stem- and progenitor cells, including growth factors, cytokines,
and extracellular vesicles (EV). At the same time, major break-
throughs in the field of EV have uncovered roles for EV in many
processes including angiogenesis, regulation of immune responses,
and ECM remodeling (10–13), which may be of specific interest
for tissue engineering. Here, we review the recent developments
in regenerative medicine and EV research, and discuss potential
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therapeutic applications of EV in restoring function in damaged
tissues.

REGENERATIVE MEDICINE: CELL THERAPIES
One of the earliest applications of cell therapy was the administra-
tion of cells for the reconstitution of blood or bone marrow (14,
15). As a result of developments during the last decades, including
improved techniques in both transient and permanent regulation
of gene expression, methods of cell isolation and propagation,
and improved protocols to regulate differentiation of cells, cell
therapies currently play a prominent role in the field of regen-
erative medicine (16). Cell therapies can directly aid repair by
forming new functional tissues, or support tissue repair through
paracrine mechanisms, for instance by secreting growth factors,
immunomodulatory molecules, and EV. Examples of direct tis-
sue formation by cell therapy are the use of autologous epithelial
cells to repair cornea injuries (17), expansion, and transplanta-
tion of chondrocytes in cartilage repair (18), or the adminis-
tration of endothelial colony-forming cells (ECFC) in a murine
hind limb ischemia model to increase neovascularization (19).
In these studies cell populations were isolated, expanded ex vivo,
and re-introduced at the site of injury to generate new, functional
tissues. The ex vivo expansion step allows the use of only limited
amounts of tissue and the proper characterization of isolated cells.
Adverse effects as dedifferentiation and induction of senescence
are great challenges adhered to this approach (20). For instance,
in vitro passaging of mesenchymal stem cells (MSC) results in
cell enlargement, differentiation, and decrease in proliferation
within 10 passages (21), and causes a strong response to micro-
environment stiffness, affecting cell morphology, and function
(22). Progenitor cells from aged or diseased donors show decreased
proliferation, prevalence, as well as functionality (23–25). Despite
these challenges, promising results have been achieved, for instance
in treatment of patients with severe autoimmune diseases with
hematopoetic stem cell transplantation (26).

It has become increasingly apparent that a more supporting
role, employed by secretion products of stem and progenitor
cells is responsible for many of the observed effects of stem cell
therapies (6–9). These paracrine factors secreted by stem- and
progenitor cells, like growth factors and cytokines, are of major
interest to discover new therapeutics that stimulate local tissue
regeneration for the use in tissue engineering as well [reviewed in
Ref. (27, 28)].

TISSUE-ENGINEERING: (BIO-)ENGINEERED SUPPORT
Repair of damaged tissue requires not only the presence of
cells capable of restoring the damaged structure, but requires a
microenvironment that promotes appropriate tissue regeneration
as well. In addition, cells need to be guided to form a structure of
the appropriate size and shape, and in many cases (for instance in
bone or cartilage repair, as well as in cardiovascular substitutes),
require structural support. In a healthy tissue, the ECM plays a key
role in guiding and regulating these processes, whereas in damaged
tissue, the ECM is often absent, damaged, or functionally impaired.
To address this problem and allow in situ regeneration, structures
that (temporarily) provide the requirements for cell retention and
tissue regeneration are employed and are referred to as scaffolds.

Scaffolds can either be of natural origin, such as decellular-
ized ECM or modified elastin- or collagen gels, or of synthetic
origin, such as synthetic hydrogels or porous polymer scaffolds.
Using decellularized ECM from xenogenic or allogenic donors
provides scaffolds that are most similar to the natural extracel-
lular environment. Use of decellularized matrices is a promising
technique, which yields biocompatible scaffolds with appropri-
ate physical and biological properties. Many ECM components,
as well as growth factors, are often conserved and can aid in
proper regeneration of functional tissues (29). To decrease the
risk of immune responses against antigens in these scaffolds, as
well as the potential transfer of pathogens, a combination of
enzymatic, physical, and chemical treatments is used to remove
cellular components from the tissue (29). Decellularized matrices
have been used for tissue engineering of several tissues, includ-
ing heart valves (30), vascular grafts (31), and trachea (32).
However, use of decellularized matrices has several disadvan-
tages. Acquiring and isolating of appropriate tissues, followed by
decellularization protocols, can be a relatively time-consuming
and expensive procedure, and incomplete decellularization or
antigen removal can result in immune reactions against grafts
(33). Cell seeding of decellularized matrices can be technically
challenging due to structural dimensions and porosity. Further-
more, control over the exact content of the matrices is lim-
ited due to donor variation, and despite pretreatment still there
exists the risk of transfer of pathogens. In order to create scaf-
folds in a safe, reproducible, affordable, and controlled man-
ner, extensive research is ongoing on the production of artificial
porous scaffolds, exploring various production techniques and
materials (34).

Artificial porous scaffolds should meet specific requirements
to allow homing of appropriate cell populations. Ideally, a syn-
thetic scaffold temporarily provides the required support and
micro-environment, is bio-degradable and eventually replaced by
autologous ECM. For cells to be able to migrate or be seeded
in the scaffold and allow an environment with proper supply of
nutrients, a porous structure is required (35). There are several
techniques to generate porous scaffolds, including solvent cast-
ing, forming emulsions before polymerization, gas foaming, as
well as binding of polymeric fibers by chemical treatment or heat-
ing (36–39). Using these techniques in generating scaffolds with
consistent porosity in complex shapes, containing areas of vary-
ing thickness and materials, is technically challenging. Currently,
the most commonly used technique in generating porous syn-
thetic scaffold is electrospinning, which allows the generation of
constructs with complex geometry, consisting of combinations of
fiber types in both mixed and layered patterns (40). Bio-degradable
polymers used in electrospinning include poly(ε-caprolactone)
(PCL), poly(glycolic acid) (PGA), poly(hydroxy alkanoate) (PHA),
and poly(lactic acid) (PLA). Mixing fiber types in specific pat-
terns allows modulation of degradability, strength, and biological
activity of scaffolds (41).

Electrospun scaffolds can be pre-seeded with autologous cells,
which may be re-programmed, differentiated, and expanded
in vitro, and can then be directly implanted or incubated in a
bioreactor until the electrospun meshwork is fully degraded and
replaced with ECM (5). Alternatively, scaffolds can be implanted
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FIGURE 1 | Bio-activated artificial scaffolds. Electrospinning allows
formation of constructs with a variety in shapes, sizes, and tissue
strength. This allows the production of constructs for a variety of
tissues (left). Electrospun fibers (middle) can be bio-activated by
coating of the fibers with proteins or peptides (right, red).

Incorporation of bio-active components into the fibers will result in
gradual release during fiber degradation (right, green). After
electrospinning, fibers can also be pre-seeded with appropriate cell
populations to induce ECM production, angiogenesis, or
immunomodulation (right, yellow).

without pre-seeding, allowing in situ recruitment of autologous
cells and circumventing the expensive, time-consuming, and chal-
lenging process of cell isolation and expansion in vitro. Incor-
poration of bio-active molecules into the scaffold may be used to
recruit proper cell populations, modulate the immune response, or
guide cells to differentiate (Figure 1). For instance, ECM-derived
peptides like the integrin recognition site peptide Arg-Gly-Asp
(RGD) enhance cell adhesion and cell viability in scaffolds (42, 43),
whereas coating with type I collagen-mimetic peptide enhances
the migration, proliferation, and osteogenic differentiation of
MSC (44). Scaffolds can also be designed to release peptides,
proteins, or cytokines during degradation, or by coating fibers
with a mixture of these bio-active molecules in a bio-degradable
substance like fibrin or gelatin. For example, gradual release of
vascular endothelial growth factor (VEGF) – a hypoxia-regulated
growth factor that plays a key role in angiogenesis – and platelet-
derived growth factor (PDGF) promoted endothelialization and
smooth muscle cell ingrowth in electrospun scaffolds (45). Release
of stromal cell-derived factor (SDF)-1α – a chemokine that is

up-regulated in tissue damage and hypoxia, attracts hematopoietic
stem cells, and induces endothelial progenitor cell (EPC) recruit-
ment – by electrospun poly(lactic-co-glycolic acid) (PLGA) scaf-
folds reduced mast cell degranulation, and increased angiogenesis
and decreased fibrosis (46). Coating of interposition grafts with
SDF-1α combined with the ECM component fibronectin (47), or
treatment with VEGF (48) has been reported to enhance graft
endothelialization.

Many of the bio-active compounds used in these approaches act
as paracrine factors in natural healing processes, or on the secre-
tome of stem- or progenitor cell populations that induce local
tissue regeneration in vivo (27). EV constitute a part of the secre-
tome that also play an important role in local induction of tissue
regeneration. For example, cardioprotective effects of conditioned
medium from MSC in ischemia/reperfusion injury were shown to
be mainly mediated by EV (49). Given the previous successes of
paracrine factors in tissue engineering, these mediators of inter-
cellular communication could also be of interest in the field of
regenerative medicine.
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EXTRACELLULAR VESICLE CHARACTERISTICS
Extracellular vesicles are lipid membrane vesicles, containing a
variety of RNA species (including mRNAs, miRNAs), soluble
(cytosolic) proteins, and transmembrane proteins presented in
the appropriate, and functional orientation (50–52). EV play a
role in many processes, including intercellular communication,
recycling of membrane proteins and lipids, immune modulation,
senescence, angiogenesis, and cellular proliferation and differen-
tiation (10, 13, 52–56). Cells release several types of vesicles with
different physiological properties, content, and function, as a result
of their different mechanisms of generation, and include exo-
somes, microvesicles, and apoptotic bodies (57). In the EV research
community, a full consensus in terminology and classification of
vesicles is yet to be achieved (58). In the past, vesicle nomencla-
ture was mainly based on the tissue of their origin. More recently,
the field has started to shift toward a terminology that focuses
rather on the mechanisms of generation of these vesicles. Vesicles
in the first category, exosomes, originate in multivesicular bodies
(MVB) (Figure 2, left). When MVB fuse with the plasma mem-
brane, the intraluminal vesicles are released from the cell and are
from thereon referred to as exosomes. Exosomes are reported to be
between 40 and 150 nm in size, with a density ranging from 1.09
to 1.18 g/ml. The most common markers used are tetraspanins
such as CD9, CD63, CD81, and CD82, lipid raft markers Flotillin-
1 and -2, as well as Alix and Tsg101. Other markers that are used
are heat shock proteins, MHC molecules, various components of

the ESCRT complex and proteins of the Rab protein family (50,
51, 59–61). Microvesicles are shed directly from the plasma mem-
brane and can be a lot larger than exosomes (50–1000 nm) (62).
There is, however, an overlap in size between these two popula-
tions. Microvesicles also contain mRNAs and miRNAs, as well as
soluble and transmembrane proteins. Like exosomes, microvesi-
cles are able to transfer functional genomic and proteomic content
to target cells (63, 64). Apoptotic bodies originate at the cell
membrane as cells undergo apoptosis. Even though these vesi-
cles are of interest in biomarker research, and have been shown to
have effects on other cells, research on these vesicles in intercel-
lular communication is limited (65–67). Furthermore, vesicular
cell-derived microparticles with biological functions have been
described (68–70). However, most descriptions of microparticles
are heterogeneous with regard to the isolated biomaterials or refer
to characteristics of non-cell-derived compounds, and depending
on the protocols used these microparticles may contain exosomes,
microvesicles, apoptotic bodies, or varying combinations of these
vesicle populations. Generally, the term EV is used when discussing
exosomes or microvesicles, or a combination of these vesicle pop-
ulations, depending on isolation techniques. However, due to the
technical limitations of current isolation techniques, samples may
occasionally also contain apoptotic bodies and protein aggregates.

The first report of a cellular function of exosomes was the shed-
ding of the transferrin receptor by maturing reticulocytes (55, 71).
Pan and Johnstone showed that removal of this receptor from the

FIGURE 2 | EV formation (left) and intercellular communication (right).
After endocytosis, intraluminal vesicle formation occurs in the late
endosome, resulting in the formation of the multivesicular body (MVB). The
MVB can either fuse with the lysosome, resulting in breakdown and
recycling of its contents, or fuse with the plasma membrane, resulting in
the release of the intraluminal vesicles, which are then deemed exosomes.
Microvesicles shed directly from the plasma membrane. Intercellular

communication can occur through three major processes: (1) direct
interaction of ligands expressed on the surface of EV with receptors on the
cell membrane, (2) direct fusion of the EV with the cell membrane, resulting
in the release of the content of the EV, or (3) internalization through the
endocytotic pathway, which can result in (A) fusion of the EV with
membrane of the endosome, resulting in content release, (B) transcytosis,
or (C) degradation through the lysosomal pathway.
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FIGURE 3 | Applications of EV in regenerative medicine. After isolation
(A), EV could be utilized in regenerative medicine through a number of
methods, either separately or in combination with cells or other
therapeutics. (B) Direct injection into tissue or circulation. (C) Mixing of EV

in hydrogels. (D) Coating electrospun fibers indirectly via chemical linkers,
antibodies, or specific tags engineered on to the EV. (E) Coating of
electrospun fibers with bio-degradable gels such as fibrin, resulting in
gradual release during gel degradation.

cell membrane occurred through endocytosis, followed by for-
mation of intraluminal vesicles (forming the MVB), which were
released when the MVB fused with the cell membrane. After this
discovery, it was believed that the exosome pathway was mainly
involved in cell homeostasis, by secreting cellular waste (72).
Not until a study of Raposo et al. for the first time showed an
immunological role for exosomes, the stimulation of CD4+ T-
cells by EBV-transformed B-cells in an antigen specific manner,
did researchers begin to explore additional functions (12). Pri-
marily being studied in the context of immunology, exosomes
were increasingly considered potential mediators for intercellular
communication. However, it was only after the discovery that exo-
somes are able to transfer functional mRNAs and miRNAs from
one cell to another, that the field gained its full momentum (52,
73). Microvesicles have also been reported to transfer functional
mRNAs and miRNAs to cells (66, 67).

Extracellular vesicles can communicate with target cells
through several mechanisms (Figure 2, right). Firstly, transmem-
brane proteins on the EV membrane can interact with receptors
on the cell membrane. These receptor–ligand interactions can then
activate signaling cascades to affect target cells. EV can also fuse
with their target cells to release their cargo, either by direct fusion
with the cell membrane or by endocytosis, after which mRNAs,
miRNAs, and proteins are released into the cytosol. Fusion of EV
with target cells can either occur directly at cell membrane, or
after endocytosis. After fusion, mRNAs transferred by EVs can
be translated in to protein, and delivered miRNAs inhibit mRNA
translation and affect cellular processes. The cargo and function
of EV depends on their producing cells, and it has been shown
that also cellular stress affects EV content, suggesting that intercel-
lular communication through EV is a dynamic system, adapting
its “message” depending on the condition of the producing cells
(50–52, 74).

EXTRACELLULAR VESICLES IN REGENERATIVE MEDICINE
Extracellular vesicles are able to affect cell phenotype, recruitment,
proliferation, and differentiation in a paracrine manner. These
paracrine effects of EV have a potential benefit in regenerative
medicine. EV can be incorporated in regenerative therapies, for
example by (co-)injection, mixing with hydrogels, or coating scaf-
folds with EV using fibrin gels or specific linkers (Figure 3). Here,
we will discuss the role of EV in essential processes in regenerative
medicine: cell viability, immune responses, ECM interaction, and
angiogenesis.

CELL SENESCENCE, VIABILITY, AND PROLIFERATION
Prevention of cell death and cell senescence is vital in optimiz-
ing efficiency of regenerative medicine, both in cell therapies as
well as in tissue engineering (75). Cell senescence depends on
both the cell source and the environment to which cells will be
introduced. Bone marrow-derived MSC from aged donors show
increased senescence, and decreased proliferative potential (76,
77), and uremic toxins promote cell senescence (78). Pretreatment
of progenitor cells such as MSC affects cell senescence as well. For
example, long-term in vitro expansion of MSC induces senescence,
and reduces differentiation potential (79, 80).

Extracellular vesicles may affect cell senescence, prolifera-
tion, and cell survival. We recently demonstrated that endothe-
lial cell-derived exosomes induced angiogenesis by inhibition
of cellular senescence, and that transfer of miR-214 downregu-
lated ataxia telangiectasia mutated (ATM) expression in recipi-
ent cells, resulting in decreased cellular senescence (13). Human
umbilical cord MSC-derived microvesicle treatment suppressed
cisplatin-induced apoptosis, and resulted in increased cell prolif-
eration through regulation of the ERK 1/2 and MAPK pathways,
both in vitro and in vivo (81). EV derived from human cardiac
progenitor cells contain anti-apoptotic miRNAs, miR-210 and
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miR-132, and treatment with these EV in a myocardial infarc-
tion resulted in decreased cardiomyocyte apoptosis (82). Similarly,
bone marrow MSC-derived exosomes were able to decrease apop-
tosis and increase cell proliferation in an acute kidney injury
model, and the authors hypothesized that this was the result
of exosome-mediated RNA transfer (83). Similar results were
obtained by Bruno et al., who showed that administration of
MSC-derived microvesicles decreased apoptosis in an acute kid-
ney injury model and in vitro in cisplatin treated human epithelial
cells, through up-regulation of anti-apoptotic genes and down-
regulation of several apoptotic genes (84). Further in vitro studies
showed that cardiomyocyte protection by MSC is partially medi-
ated by transfer of miR-221 in microvesicles, resulting in reduced
caspase activity after ischemic injury (85). Certain EV have also
been shown to increase cell proliferation. Tumor-derived EV were
reported to induce proliferation in a variety of tissues (86–88).
MSC-derived EV have also been found to increase proliferation:
bone marrow MSC-derived exosomes induced proximal tubular
epithelial cell proliferation in an acute kidney injury model (89),
and umbilical cord MSC-derived exosomes increased in vitro skin
cell proliferation as well as migration after heat-stress, through
Wnt signaling by trafficking of Wnt4 (90). Interestingly, Zhang
et al. also observed that treatment with these vesicles in a rat
skin burn model resulted in accelerated epithelialization (90).
Exosomes derived from tubular epithelial cells stimulated with
hypoxia activated fibroblasts through TGF-β1 signaling, resulting
in increased fibroblast proliferation, which could aid in accelera-
tion of tissue repair (91). These studies indicate that EV play a role
in local tissue repair through regulation of cell proliferation.

The capacity of EV to regulate cell senescence, apoptosis, and
proliferation, parameters that greatly affect tissue engineering and
cell therapy outcome, suggest therapeutic potential in regenerative
medicine. Indeed, MSC-derived vesicles show positive effects on
tissue repair through various pathways, even reducing apoptosis as
a result of ischemic injury (92). This is of interest, since ischemia
in larger tissue-engineered constructs is a substantial issue (93).

ANGIOGENESIS
Tissue engineering of large tissues requires proper vasculariza-
tion for sufficient supply of nutrients and oxygen, and draining
of cellular waste. Since tissue-engineered constructs thicker than
100–200 µm already run in to problems in respect to oxygena-
tion, nutrient supply, and removal of waste products, controlled
vascularization of neo-tissue is vital (93). Strategies to induce
vascularization include addition of endothelial (progenitor) cells,
engineering vasculature, as well as the use of paracrine factors
(93–95). Several studies on cancer-derived EV demonstrated their
role in tumor angiogenesis through a variety of pathways, includ-
ing cell cycle-related mRNAs, several major intracellular kinase
pathways, transfer of miRNAs, and by carrying pro-angiogenic
cytokines (96–100). EV from endothelial cells have also been
demonstrated to induce an angiogenic program in target endothe-
lial cells in vitro and in vivo both through Notch-dependent tip-cell
formation and induction of a pro-angiogenic program in par-
allel to miR-214-dependent repression of senescence (13, 101).
EV from other cell types have been demonstrated to stimulate
in vitro and in vivo vessel formation by endothelial cells as well.

For example, adipose MSC-derived EV, which could be increased
in function and number by PDGF stimulation (102), as well as
bone marrow MSC-derived EV, promoted angiogenesis in a rat
myocardial infarction model (103). In the latter model, hypoxic
stimulation of the EV-producing cells was required to obtain func-
tional EV. Similar effects of hypoxia were observed in microvesicles
from human umbilical cord MSC, which promote angiogenesis
in vitro as well as in vivo in a rat hindlimb ischemia model (103,
104). These findings underline the importance of culturing con-
ditions of their producing cells on EV content (74). Cantaluppi
et al. showed that EPC-derived microvesicles increase endothe-
lial cell proliferation, migration, and vessel formation in vitro
by transfer of pro-angiogenic miRNAs, miR-126 and miR-296.
These EPC microvesicles also increased vascularization of islet
endothelium and β-cells transplanted in SCID mice (105) and,
in a SCID mouse hind limb ischemia model increased capillary
density, enhanced limb perfusion, and reduced injury after 7 days
(106). A study by Sahoo et al. in 2011 showed that exosomes iso-
lated from CD34+ mononuclear cells increased endothelial cell
viability, proliferation and tube formation in vitro, and stimulated
angiogenesis in vivo in both matrigel plug- and corneal assays, and
that the pro-angiogenic effect of these cells was mainly through
these EV (107).

Overall, different types of EV appear to be able to induce angio-
genesis through a variety of pathways, and through transfer of
mRNA,miRNAs,and proteins,underlining their potential in tissue
engineering.

EXTRACELLULAR MATRIX INTERACTIONS
The ECM plays a major role in tissue engineering, providing shape
and strength to the newly formed tissue as well as a site for interac-
tions with and guidance of cells. Both ECM architecture and mole-
cular composition are determinants for cell recruitment, retention,
and differentiation, and thus the final local cell phenotype. In
tissue engineering strategies using bio-degradable scaffolds, the
load-bearing and cell retaining function of the scaffold will have
to be fulfilled by the locally produced ECM after the scaffold is
degraded. EV are able to influence ECM composition through
direct ECM interactions, or by interacting with ECM-producing
cells.

Extracellular vesicles express adhesion molecules, including
members of the immunoglobin superfamily and integrins. Exo-
somes derived from B-cells, endothelial cells, and dendritic cells,
express ICAM-1 (74, 108, 109), and endothelial cell-derived
exosomes express CD44, CD166, PECAM, and B-CAM (74).
Reticulocyte-derived exosomes have been shown to bind to
fibronectin via integrin α4β1 (110). B-cell-derived exosomes con-
tain β1 and β2 integrins, which were able to bind to collagen-
1, fibronectin, and TNF-α activated fibroblasts (108). Exosomes
derived from dendritic cells have also been reported to contain
integrins (111). These studies show that EV may not only bind to
and interact with cells, but also bind to various ECM components.
It has been suggested that EV could adhere to the ECM to form
a gradient or potential reservoir that could be released in case of
inflammation or ECM degradation (108).

Besides molecules responsible for ECM interaction, EV have
also been shown to express ECM-remodeling proteins, like matrix
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metalloproteinases (MMPs), which can degrade collagens, elastin,
fibronectin, and laminin. These processes are important in ECM
re-structuring, as well as cytokine release, angiogenesis, and cell
migration (112, 113). For example, human fibrosarcoma and
melanoma cell-derived exosomes contain both full length and
proteolytically processed MMP14, shown to be enzymatically
active since these exosomes activated pro-MMP2 resulting in
the degradation of both collagen-1 and gelatin (114). Cardiomy-
ocyte progenitor-derived exosomes expressed enzymatically active
MMP2, as well as MMP-activator EMMPRIN (115). EMMPRIN
has also been found on CD8+ T-cell microparticles, which have
been shown to induce fibrolytic activation in hepatic stellate cells
(70). Madin-Darby canine kidney cells (MDCK) that have under-
gone epithelial to mesenchymal transition (EMT) showed an
increase in MMP1, -14, and -19 expression in their exosomes, as
well as several integrins (116). Additionally, EV can also stimulate
MMP production in target cells. Keratinocyte-like cells are able to
stimulate MMP1 expression in dermal fibroblasts through transfer
of several 14-3-3 isoforms by EV (117). Furthermore, monocyte
and T-cell-derived microparticles are able to induce production of
MMP-1, MMP-3, MMP-9, and MMP-13 in fibroblasts (68). Thus,
EV can influence MMP abundance and activity on several levels.

Extracellular vesicles also have the ability to contribute to ECM
strength. Members of the lysyl oxidase family crosslink collagens
and elastin, increasing ECM load-bearing properties. Lysyl oxi-
dase treatment of tissue-engineered cartilage constructs results
in increased stiffness and enhanced cartilage integration, and
lysyl oxidase-like 2 induces angiogenic sprouting through inter-
acting with collagen-4 in the basal membrane (118, 119). Lysyl
oxidase was shown to be enriched in exosomes derived from
hypoxic glyoma cells (98) and lysyl oxidase-like 2 in endothe-
lial cells (74). Interestingly, exosomes from hypoxic endothelial
cells also showed increased abundances of the ECM components
fibronectin, collagen-4 and -12 subunits, and perlecan, suggesting
a hypoxia-mediated role in focal ECM modification by exosomes
(74). EV are also able to affect local ECM production. Borges et al.
found that upon hypoxic stimulation, epithelial cells stimulate
fibroblasts through exosome-mediated TGF-β1 signaling, result-
ing in increased collagen-1 production (91) and suggesting an
exosome-mediated response resulting in local tissue repair. The
effects of EV on both ECM production and remodeling could be
of use in the steering of in situ ECM formation.

IMMUNOMODULATION
Modulating immune responses is vital in tissue engineering. The
type and severity of the immune response against an implant
depends on several factors including injury from surgery, the
(bio)materials used, location of the graft, and the condition of
the patient (120). An excessive or inappropriate immune response
could result in damage, encapsulation or rejection of a tissue-
engineered construct. On the other hand, immune responses are
potent triggers for regenerative processes, including cell recruit-
ment, proliferation, and angiogenesis, which are key to the success
of in situ tissue engineering (121).

When transplanting a tissue-engineered construct, the innate
immune response consists of the acute and the chronic phase.
The acute immune response is an immediate reaction against

foreign structures, such as certain (bio)materials. An influx of
neutrophils and macrophages induces the release of inflammatory
cytokines, which results in local inflammation and the recruit-
ment of additional immune cells. Cross-talk between macrophages
and T-cells, as well as environmental cues, regulate a shift
in macrophage sub-types in to either M1 (inflammatory), or
the M2 (anti-inflammatory, regenerative) subtype (122). M1
macrophages promote recruitment of inflammatory immune cells,
and release ECM-degrading proteins to allow quick migration
through inflamed tissues. As the subtype of macrophages shifts
to M2, pro-inflammatory cytokine release is inhibited, angiogenic
stimulation is increased, and local fibroblasts are activated in order
to produce and restore the ECM. Long-term inflammation results
in a foreign body response (FBR) in which case a foreign tissue
is encapsulated by a fibrous, barely vascularized connective scar-
like tissue (123). An antibody-mediated immune response against
allografts or tissues seeded with non-autologous cells could result
in rejection of a graft. These findings underline the importance
of tuning the immune response in tissue engineering: sufficient
to induce vascularization, cell recruitment, and ECM production,
while preventing fibrosis, tissue damage, and FBR.

The modulatory role of EV in innate immune responses could
prove beneficial in tissue engineering. MSC-derived exosomes
induced an M2-like phenotype in monocytes in vitro, resulting in
polarization of activated CD4 T-cells to regulatory T-cells (124).
Additionally, tumor-derived exosomes have been shown to induce
a shift toward an activated M2 phenotype (125), as well as an
M1 phenotype (126). Furthermore, EV can play a role in the
suppression of allograft rejection. Autologous regulatory T-cell-
derived exosomes postponed allograft rejection in a rat kidney
transplantation model (92). Immature dendritic cell-derived exo-
somes induced allograft tolerance in a cardiac allograft mouse
model (127), as well as in a rat intestinal transplantation model
(128) by increasing regulatory T-cell populations.

Mesenchymal stem cells themselves have been a tool of inter-
est for their immunosuppressive capacities, inhibiting B- and
T-cells, natural killer cells, macrophages, and dendritic cells (129–
131). Accordingly, MSC-derived exosomes promote secretion of
anti-inflammatory cytokines, and contain an array of tolerogenic
molecules (132), and administration of MSC-derived exosomes
in a myocardial ischemia/reperfusion injury model showed a
significant reduction of local and systemic inflammation after
24 h (133). In a renal ischemia-reperfusion model in rats, MSC-
derived microvesicles administered to the caudal vein inhibited
inflammation as well as renal fibrosis (134). Indeed, a system-
atic literature study of MSC-derived EV revealed that modulation
of EV responses, as well as repair of organ injury and suppres-
sion of tumor growth in preclinical studies, shows therapeutic
potential (135).

The potential immunomodulatory role of EV may be relevant
for regenerative medicine by steering vascularization, cell recruit-
ment, and ECM formation, as well as the prevention of tissue
damage, and FBR.

EXTRACELLULAR VESICLES POTENTIAL
All in all, EV show great potential for a role in regenerative medi-
cine because of their role in cell recruitment, differentiation, and
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Table 1 | Functional relevance of EV in regenerative processes.

Process Contribution Reference

Cell senescence, viability

and proliferation

Inhibition of cellular

senescence

13

Inhibition of apoptosis 81–85

Increased cell proliferation 81, 83, 86,

89–91

Angiogenesis Transfer of pro-angiogenic

proteins

96

Transfer of pro-angiogenic

miRNAs

105

Notch signaling 101

Inhibition of endothelial

senescence

13

ECM interactions Formation of signaling

reservoir in ECM

108

ECM remodeling through

MMPs

68, 70,

115–117

ECM crosslinking by lysyl

oxidases

74, 98

Inducing ECM production 91

Immunomodulation Steering M1-M2

macrophage phenotype

124–126

Increasing regulatory T-cell

population

128

Decreasing graft rejection 85, 127, 128

Promoting anti-inflammatory

cytokine secretion

132

An overview of potential roles of EV in regenerative medicine.

immunomodulation (Table 1). Many of these functions of EV
may also be combined with other regenerative strategies as their
effects on nutrient and oxygen supply, immune responses, and
cell viability and senescence may benefit efficacy of approaches
in regenerative medicine, such as cell therapies or in situ tissue
engineering (27, 75, 93). Given the role of EV in processes that
greatly affect tissue regeneration, further studies in EV-mediated
paracrine signaling and exploration of new methods to utilize EV
or components thereof is warranted and may lead to the discovery
of novel regenerative therapeutics, as well as methods to improve
current techniques.

APPLICATIONS OF EXTRACELLULAR VESICLES IN
REGENERATIVE MEDICINE
Even though, the existence of EV was discovered decades ago, inter-
est in their role as paracrine factor was only relatively recently
sparked. Much remains unknown about the pathways that deter-
mine the content of EV, and many tissue-specific functions of EV
remain to be uncovered. Future studies will provide new insights
in EV function and biogenesis, and reveal the roles of proteins

and miRNAs in EV function. EV are important components of
the secretome involved in intercellular communication, of which
content and function can change depending on the conditions of
the vesicle producing cells (74, 91, 102–104). Therefore, changes in
EV content upon stimulation of producing cells with conditions
relevant in development, tissue regeneration, and wound repair
may reveal new pathways and insights in intercellular signaling
that play key roles in these conditions. Altogether, these qualities
make EV an interesting target for the potential discovery of new
therapeutics in regenerative medicine.

EXTRACELLULAR VESICLES AS THERAPEUTICS
Extracellular vesicles from specific cell types and conditions have
positive effects on regeneration in many tissues (136). It has also
been observed that certain EV display multiple functions. For
instance, MSC-derived EV are able to steer cell viability, prolifer-
ation, angiogenesis, and immune responses (81–83, 103, 104, 124,
132). Harnessing the paracrine effects of stem- and progenitor
cells without having to administer living, replicating, potentially
pluripotent cell populations is an advantage in regard to safety,
regulation, and complexity.

However, there are challenges to overcome. The current golden
standard in isolation of functional EV remains ultracentrifugation
(58), which is a time-consuming and costly procedure that requires
a large amount of cells. Although faster commercial reagents are
available, which isolate higher yields of EV, these products still
require optimization in specificity as they have been reported to
also precipitate non-EV contaminants such as lipoproteins (137).
Despite decades of research, EV cargo trafficking pathways have
not completely been elucidated, and therefore control over the
content of EV,and unspecific additional effects, is limited. Research
in both biogenesis of EV, as well as techniques for engineering for
artificial alternatives for EV is therefore warranted.

EXTRACELLULAR VESICLES MODIFICATION
The concept of developing synthetic alternatives for EV is moti-
vated by the challenges that have been described above: the ability
to form synthetic EVs would allow control over these elements,
which would facilitate clinical translation. The approach could
vary from modulation of biological EV synthesis to a purely syn-
thetic production method. In the first approach, the EVs are still
harvested from cells, but the producing cells have been engineered
to enrich EVs with tags or therapeutic molecules. Incorporated
tags could be used to assist in EV purification, or for targeting
toward specific tissues, cells, or synthetic scaffolds. Also, the thera-
peutic payload can be enriched by overexpression of specific RNAs
or proteins (138, 139).

More control over EV content can be achieved by a semi-
synthetic approach, which is based on techniques used in the
therapeutic enveloped virus-field. Here, the viral envelope is solu-
bilized in a high critical micelle concentration detergent. As a result
the proteins and lipids that are part of the envelope are present in
micelles that can be separated from the viral capsid. By remov-
ing the detergent, the envelope is reconstituted, and “virosomes”
are formed (140). Translating this approach to EVs may improve
the control over the composition of the bilayer, which addition-
ally can be enriched with desired molecules, as well as during
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the reconstitution step, offering full control over the encapsulated
(therapeutic) compounds in the aqueous core. At the same time,
the naturally encapsulated molecules are removed.

SYNTHETIC EXTRACELLULAR VESICLES
The semi-synthetic approach still relies on the biological pro-
duction of vesicles. The power of synthetic strategies lies in the
scalability of the process. The minimal EV mimic is already on
the market and is known as liposomes (141). Liposomes consist
of a phospholipid bilayer around an aqueous core, and have been
investigated as therapeutic delivery systems over the last 40 years.
Therapeutic liposomes tend to be around 100 nm in size and have
a lipid composition that allows them to circulate for prolonged
periods in the blood stream. Generally, therapeutic liposomes are
prepared in batches that vary between liters to hundreds of liters
in size, with a colloidal stability of several years, even in solution.
Still the translation of liposome technology to mimic EVs has
some obstacles to overcome. For instance, the lipid and protein
composition of EV, which may be important for their cellular inter-
actions, is often complex, and the current production process of
liposomes involves simple synthetic lipid mixtures without other
components within the bilayer. However, liposomes have been suc-
cessfully equipped with targeting ligands (such as antibodies) and
a variety of therapeutic payloads including biologicals (142). These
characteristics are several orders of magnitude away from the cur-
rent state of the art in the EV field, but do illustrate the potential
value of synthetic EV.

CONCLUSION
Over the past decades, it has been shown that EV play a regu-
latory role, and have modulatory potential, in many biological
processes. EV show great potential for therapeutics, biomarker
research, and even alternatives to stem-cell-based therapies which
rely on paracrine effects. These new approaches have great poten-
tial for the support of endogenous repair, including enhancements
of existing regenerative medicine approaches. This potential mer-
its further research in the potential of EV, as well the study of new
techniques to produce and utilize engineered EV.
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