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Although observed for several decades, the release of

membrane-enclosed vesicles by cells into their surrounding

environment has been the subject of increasing interest in the

past few years, which led to the creation, in 2012, of a scientific

society dedicated to the subject: the International Society for

Extracellular Vesicles. Convincing evidence that vesicles allow

exchange of complex information fuelled this rise in interest.

But it has also become clear that different types of secreted

vesicles co-exist, with different intracellular origins and modes

of formation, and thus probably different compositions and

functions. Exosomes are one sub-type of secreted vesicles.

They form inside eukaryotic cells in multivesicular

compartments, and are secreted when these compartments

fuse with the plasma membrane. Interestingly, different

families of molecules have been shown to allow intracellular

formation of exosomes and their subsequent secretion,

which suggests that even among exosomes different

sub-types exist.

Addresses
1 Institut Curie, Centre de Recherche, 26 rue d’Ulm, Paris F-75248,

France
2 INSERM U932, Paris F-75248, France
3 Paris Sciences et Lettres (PSL*), Paris F-75005, France
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Introduction: the discovery of exosomes
The release of membrane-enclosed vesicles from tumour

cells and platelets [1,2], possibly explaining observations

of extracellular vesicles (EVs) within tissues [3] or body

fluids [1,4] was described more than 40 years ago. Origin-

ally, these EVs were thought to bud directly from the
§ Note: Official gene and protein symbols were generally used with

protein symbols written in uppercase letter (e.g. RAB27A) indepen-

dently of the species studied (mouse, human, etc.) (www.informatics.-

jax.org/mgihome/nomen).
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plasma membrane (PM). In the 1980s, however, two

groups studying reticulocyte maturation described a more

complex mode of EV secretion. They showed that small

vesicles were formed by inward budding inside an intra-

cellular endosome, leading to the formation of a multi-

vesicular body (MVB), which could then fuse with the

PM and release outside its internal vesicles [5,6]

(Figure 1). In 1987, the word ‘exosomes’ was proposed

for these EVs of endosomal origin [7] (Box 1). The

existence of this unusual EV secretion pathway was

confirmed afterwards in antigen-presenting cells [8�,9],

epithelial cells [10] and tumour cells [11]. Further

description of mRNA and miRNA in exosomes [12��]
sparked a strong interest in these vesicles. Since mRNA

had also been shown in PM-derived microvesicles [13],

it is currently believed that cells use EVs as a means of

extracellular communication and exchange of proteins,

lipids and nucleic acids [14]. Whether exosomes and

other EVs display different or identical functions is,

however, still unclear. Answering this question will

become possible from a detailed knowledge of the cell

biology of these vesicles, which should provide targets

to specifically affect their production in vivo. This

review will summarize the recent advances on the

molecular machineries of exosome formation and

secretion, but interested readers can refer to our more

detailed review also discussing the other types of EVs

[15].

Exosome composition
Initial proteomic studies revealed that exosomes contain a

specific subset of proteins from endosomes, the PM and

the cytosol [16], but very few from other intracellular

organelles (nucleus, mitochondria, Golgi). This con-

firmed that exosomes represent a specific subcellular

compartment, since they do not contain a random set

of proteins, as would be the case for cell debris. These

observations were validated in numerous other studies of

the protein composition of exosomes, and recently of

other EVs, which have been made accessible through

the creation of two specific databases compiling pub-

lished data: Vesiclepedia [17�] and EVpedia [18�]. Of

note, although exosomes should be enriched in endoso-

mal components, as compared to PM-derived EVs, the

two types of EVs display a large overlap in composition,

and it is not possible today to name universal (i.e. valid for

any cell type) protein markers specific for exosomes

versus PM-derived vesicles.

Interestingly, although investigations of the lipid compo-

sition of exosomes were not as frequent as proteomic

analyses, all studies showed differences with whole cell
www.sciencedirect.com
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Intracellular machineries of exosome biogenesis and secretion. Schematic representation of the origin and release of exosomes by eukaryotic cells.

Exosomes are formed as ILVs by budding into early endosomes and MVBs. Several molecules are involved in the biogenesis of ILVs, such as the

ESCRT machinery, lipids (such as ceramide) and the tetraspanins. It is still unknown whether these mechanisms act simultaneously on the same MVB

or on different MVBs. The fate of MVBs can be either fusion with lysosomes or fusion with the PM, which allows the release of their content to the

extracellular milieu. Several RAB proteins (RAB11, RAB27 and RAB35) have been shown to be involved in the transport of MVBs to the PM and in

exosome secretion. Here, we propose that these proteins can act on different MVBs. In addition, SNAREs are probably involved in fusion of these

MVBs with the PM. Other types of secreted vesicles bud directly from the plasma membrane, and are often called microvesicles, or microparticles, two

words also sometimes used generally for all types of EVs.
membranes [19–21,22��,23,24]. Exosomes are enriched in

cholesterol, sphingomyelin, ceramide and phosphatidyl-

serine, but not in lysobisphosphatidic acid (LBPA), a lipid

described in MVBs’ intraluminal vesicles (ILVs) [25].
Box 1 Nomenclature issue

Here, we use the term ‘exosomes’ as defined by Rose Johnstone in

1987 [7], and not the more general use for any vesicles released by

cells [79]. Currently, the use of the term ‘exosomes’ for MVB-derived

EVs is generally accepted in the field, although the variety of EVs

secreted by cells and difficulties in proving the actual origin of EVs

led to a less strict usage: either for any small EVs (of 50–100 nm

diameter by transmission electron microscopy), or for EVs recovered

after 100 000 � g ultracentrifugation. As proposed recently by S

Gould and G Raposo [80��], given the lack of perfect demonstration

of EVs’ endosomal origin, we can only suggest that researchers

clearly specify their interpretation of whatever term they use for the

EVs they analyse. In addition, the term ‘exosome’ has been used

since 1997 in a completely different field, not related to EVs: for a

multi-enzyme ribonuclease complex involved in RNA processing

[81]. Note that the first occurrence of the term in the literature was in

1970 for an ‘exosome model’, proposing that DNA segments enter

the cells of treated individuals and become firmly associated with

their homologous chromosome segments, but are never integrated

into the linear structure of the chromosome [82]. ‘Exosome’ is not

used in this particular sense anymore.

www.sciencedirect.com 
Some of these lipids (e.g. sphingomyelin and cholesterol)

and some exosomal proteins (e.g. GPI-anchored proteins

and flotillins) are also enriched in detergent-resistant

subdomains of the PM called lipid rafts [26]. Indeed, a

direct link between endocytosis of lipid rafts and eventual

secretion into exosomes has recently been shown in

mesenchymal stem cells [27].

These analyses of exosome composition unravelled the

presence of molecules or families of molecules, which

could be involved in their formation inside MVBs, or in

their release outside the cell. We will thus now discuss the

current knowledge of exosome biogenesis and in particu-

lar their formation as ILVs in MVBs and their secretion

requiring the transport and fusion of MVBs with the PM.

Exosome biogenesis: formation of ILVs in
endosomal compartments
MVBs, which appear along the endocytic pathway, are

characterized by the presence of vesicles in their lumen

(i.e. ILVs) formed by inward budding from the limiting

membrane [28] (Figure 1). The molecular mechanisms of

ILV formation have been extensively studied, especially

in yeast [29], but we will describe here only the studies
Current Opinion in Cell Biology 2014, 29:116–125
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Table 1

Published studies on exosome biogenesis (italics highlight tumour cell models)

Protein name Cell type used in study Markers used for

exosome definition

Tools used for

inhibition

Refs

ESCRT-0

HRS HeLa-CIITA CD63, CD81, MHCII shRNA [32]

Primary Dendritic cells Ubiquitinated proteins,

TSG101, VPS4B

shRNA [33]

HEK293 EVI, WNT3A, CD81 siRNA [34]

Head neck squamous

cell carcinoma

(SCC25-H1047R)

MT1, TSG101 siRNA [35]

STAM1 HeLa-CIITA CD63, CD81, MHCII shRNA [32]

ESCRT-I

TSG101 HeLa-CIITA CD63, CD81, MHCII shRNA [32]

MCF-7 Syntenin-1, CD63,

syndecan-1 C-terminal

fragment

siRNA [36�]

RPE1 Flotillin-1 siRNA [37��]

Oli-neu PLP siRNA [22��]

ESCRT-III

CHMP4 MCF-7 Syntenin-1, CD63,

syndecan-1 C-terminal

fragment

siRNA [36�]

Accessory proteins

ALIX HeLa-CIITA CD63, CD81, MHCII shRNA [32]

MCF-7 Syntenin-1, CD63,

syndecan-1 C-terminal

fragment

siRNA [36�]

C2C12 ALIX, HSC70, beta enolase,

Pan-actin, CD63

siRNA [38]

VPS4

RPE1 Flotillin-1 Dominant negative

mutant overexpressed

[37��]

HeLa-CIITA CD63, CD81, MHCII shRNA [32]

MCF-7 Syntenin-1, CD63,

syndecan-1 C-terminal

fragment

Inhibition of both

isoforms by siRNA

[36�]

ESCRT-independent mechanism

Ceramide Oli-neu PLP GW4869 (neutral

sphingomyelinase inhibitor)

[22��]

MCF-7 Syntenin-1, CD63,

syndecan-1 C-terminal

fragment

siRNA [36�]

Huh-7.5.1c2 CD63, CD81 GW4869 [46]

HEK293 CD63 GW4869, siRNA [47]

Flotillin-2 Oli-neu Flotillin-2, ALIX, CD63,

cholesterol

siRNA [49]

PLD2 MCF-7 ALIX, Syntenin-1, CD63 siRNA, CAY10594 (PLD2

inhibitor)

[50�]

RBL-2H3 Fluorescent staining of

membranes

Overexpression of

active/inactive form

[24]

CD81 Primary

Lymphoblasts

Proteomic analysis Knock-out mice [54�]
analysing these molecules in the context of exosome

release, as summarized in Table 1.

ESCRT-machinery

Description of the Endosomal Sorting Complex Required

for Transport (ESCRT) machinery involved in the for-

mation of ILVs began in the early 2000s [30], and has

been widely reviewed lately in the literature [29,31].
Current Opinion in Cell Biology 2014, 29:116–125 
ESCRT consists of four complexes plus associated

proteins: ESCRT-0 is responsible for cargo clustering

in a ubiquitin-dependent manner, ESCRT-I and

ESCRT-II induce bud formation, ESCRT-III drives

vesicle scission, and the accessory proteins (especially

the VPS4 ATPase) allow dissociation and recycling of the

ESCRT machinery. Members of the ESCRT family,

TSG101 and ALIX (gene name: Pdcd6ip), were found
www.sciencedirect.com
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in our first extensive proteomic analysis of mouse den-

dritic cell (DC)-derived exosomes, even before they were

known to belong to this machinery [16]. Identification of

ESCRT components in exosomes was further confirmed

and extended by others (see EVpedia: www.evpedia.info;

Vesiclepedia: www.microvesicles.org).

Four independent studies have shown a requirement for

the ESCRT-0 member HRS in exosome secretion,

demonstrated by a decrease in exosome secretion upon

HRS inhibition in various cell types: HeLa cells [32],

mouse DCs (but only after incubation with an antigen)

[33], HEK293 [34] and head and neck squamous cell

carcinoma [35]. In addition, in our shRNA-based screen

performed in HeLa cells expressing the Major Histocom-

patibility Complex (MHC) class II machinery of antigen

presentation (HeLa-CIITA), depletion of the STAM1

ESCRT-0 component also reduced exosome secretion

[32].

Depletion of TSG101, an ESCRT-I component, also

leads to reduced exosome secretion in the tumour cells

HeLa-CIITA [32] and MCF-7 [36�], and in immortalized

RPE1 epithelial cells [37��], but not in the oli-neu oli-

godendroglial cells, where another ESCRT-independent

mechanism was described (see below) [22��].

Members of the ESCRT-II and ESCRT-III complexes

are consistently found in proteomic analyses of various

exosomes (see Vesiclepedia and EVpedia). In our shRNA

screen, we did not observe a clear influence of ESCRT-II

proteins on exosome secretion by HeLa-CIITA cells, and

technical issues prevented conclusions on ESCRT-III

components [32]. In the MCF-7 cell line, however,

depletion by RNAi of each isoform of CHMP4, separately

or simultaneously, decreased exosome secretion [36�].

The ESCRT-III-associated protein ALIX was recently

shown to promote intraluminal budding of vesicles in

endosomes and hence exosome biogenesis, upon inter-

action with syntenin, the cytoplasmic adaptor of heparan

sulphate proteoglycan receptors [36�]. In HeLa-CIITA

cells, depletion of ALIX caused an increase of MHC class

II molecules in the cells and consequently in the released

vesicles, without a clear effect on the amount of exosomes

secreted, while in primary DCs silencing of ALIX

decreased secretion of CD63, CD81 and MHC class II

positive vesicles in half of the donors [32]. In a muscle cell

line, ALIX depletion promoted an increased release of

PM-derived EVs containing HSC70 but decreased

secretion of CD63 (a tetraspanin enriched in late MVBs,

hence in exosomes) [38].

VPS4 is involved at the final steps of ILV formation —

that is scission of a membrane and/or dissociation of the

ESCRT-III complex [31]. Data concerning its impact on

exosome biogenesis seem contradictory: in our hands,
www.sciencedirect.com 
shRNA inhibition of VPS4B in HeLa-CIITA cells

increased exosome secretion [32], while a decrease in

exosome secretion was observed in MCF-7 upon simul-

taneous silencing of VPS4A and VPS4B, with no signifi-

cant effect of single inhibition of each isoform [36�]. A

dominant-negative form of VPS4 (which blocks the func-

tion of both isoforms) has also been shown to inhibit

exosome secretion in RPE1 cells [37��], but not in oli-neu

cells which secrete exosomes in an ESCRT-independent

manner [22��]. Either compensation of VPS4B by

increased activity of VPS4A, or alternative functions of

VPS4B in HeLa cells, possibly linked to their constitutive

expression of papillomavirus proteins (which have

recently been shown to reduce exosome secretion [39])

could explain the observed increase of exosome secretion

in our study [32].

Although many studies use ESCRT inhibition as a tool to

inhibit secretion of exosomes, one should be aware that

some of these proteins are involved in other cellular

mechanisms, especially cytokinesis [29,40], and mem-

brane repair [83], consequently their silencing should

be examined with care since this may alter cellular func-

tions other than the formation of MVB. In addition,

ESCRT-I and accessory proteins (e.g. TSG101, ALIX

and VPS4) have been shown to promote budding from the

PM of enveloped viruses [40–42], or of microvesicles or

exosome-like vesicles, especially in T lymphocytes

[43,44]. Hence dependence on ESCRT-I or downstream

components of this machinery does not necessarily

demonstrate MVB origin.

ESCRT-independent mechanisms

Recently, several articles suggested that ESCRT-inde-

pendent mechanisms are also involved in ILV formation

and exosome biogenesis: these mechanisms involve

lipids, tetraspanins, or heat shock proteins. Of note,

mammalian cells depleted for key ESCRT components

still form MVBs [45].

Exosomes bearing the proteolipid protein (PLP) are

normally secreted by oligodendroglial cells after ESCRT

inhibition [22��]. In these cells, inhibition of neutral

sphingomyelinase, leading to impaired ceramide bio-

genesis, decreased exosome secretion. Ceramide was

proposed to induce inward curvature of the limiting

membrane of MVBs to form ILVs. Since this work,

several labs have used neutral sphingomyelinase inhi-

bition as a proof that their analysed EVs were indeed

exosomes [46,47], although a potential effect of such

treatments on release of PM-derived EVs, or on other

cellular functions or secretions has never been actually

ruled out. Caution should thus be taken in interpreting

sphingomyelinase inhibition experiments.

Another lipid enriched in exosome membranes is choles-

terol [20,21,23], an important component of MVBs [48].
Current Opinion in Cell Biology 2014, 29:116–125
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In the same oligodendroglial cells, drug-induced or

genetic mutation-induced cholesterol accumulation in

late MVBs was shown to increase the secretion of vesicles

bearing Flotillin-2, ALIX, CD63 and cholesterol, in a

Flotillin-2-dependent manner [49].

Finally phospholipase D2 (PLD2), which, unlike phos-

pholipase D1 (PLD1) is enriched in exosomes [24], is

involved in hydrolysis of phosphatidylcholine to phos-

phatidic acid (PA). PLD2, but not PLD1, was shown in

two different cell types to be necessary for exosome

biogenesis [24,50�]. The model proposed is that PA

formation in the inner leaflet of MVB’s limiting mem-

brane would induce inward curvature and thus formation

of ILVs, as described for ceramide [50�]. Thus, one would

expect enrichment of PA in exosomes, which has not

been addressed so far.

On the other hand, four-transmembrane domain

proteins of the tetraspanin family have recently been

proposed as instrumental in selecting cargoes for exo-

some secretion. In human melanoma cells, CD63 allows

sorting of a melanosomal protein into ILVs, in a cer-

amide-independent and ESCRT-independent manner

[51��]. Tetraspanins are enriched in ILVs of MVBs and

in exosomes [52]. TSPAN8 expression could modify

both the mRNA content and the protein composition of

exosomes secreted by rat pancreatic adenocarcinoma

cells [53]. Similarly, CD81 was recently shown to allow

targeting of an array of its ligands into secreted exo-

somes [54�].

Finally, the chaperone HSC70 was previously shown to

allow recruitment of the transferrin receptor (TFR) to

exosomes [55]. More recently, cytosolic proteins contain-

ing a KFERQ-motif were found to bind HSC70, which

induced their selective transfer to ILVs [56].

It is not known whether these multiple mechanisms of

biogenesis of exosomes and ILVs can take place in a

single MVB, or rather if they suggest that different MVBs

populations can coexist within the cell. Indeed, evidence

of the heterogeneity of MVBs within a single cell already

exist: for example, the non-ubiquitous distribution of

cholesterol in all MVBs [57], the lack of enrichment of

LBPA in exosomes, as opposed to its enrichment in ILVs

[23,58], or the existence of two distinct MVB subsets

within DCs, one being formed upon cognate interaction

with T lymphocytes [59].

Exosome secretion: transport and fusion of
MVBs with the plasma membrane
Mechanisms that drive mobilization of secretory MVBs

and fusion of their limiting membrane with the PM have

started being unravelled in the past few years. The

studies described below are summarized in Table 2.
Current Opinion in Cell Biology 2014, 29:116–125 
The RAB family of small GTPase proteins controls

different steps of intracellular vesicular trafficking, such

as vesicle budding, vesicle and organelle mobility through

cytoskeleton interaction, and docking of vesicles to their

target compartment, leading to membrane fusion [60].

Since the first proteomic studies, endosome-associated

members of this family were identified in exosomes [16].

RAB11 has been linked to the control of TFR and

HSC70-containing exosome release in K562 cells [61].

Using different screening strategies, several RAB proteins

emerged as new players in exosome secretion [62��,63��].
Inhibition of RAB35 impaired PLP-bearing exosome

secretion in oli-neu cells [62��], and in primary oligoden-

drocytes [64]. In the human cell line RPE1 either RAB11

or RAB35 was required for the secretion of anthrax toxin-

loaded exosomes to the extracellular medium [37��]. In

our shRNA-based screening of different RAB proteins in

HeLa-CIITA cells, depletion of RAB5A, RAB9A,

RAB2B, and more strikingly RAB27A and RAB27B,

efficiently decreased exosome secretion, whereas

depletion of RAB11A or RAB7 did not [63��]. By contrast,

syntenin-containing and ALIX-containing exosome

secretion by MCF-7 cells was shown to require RAB7

[36�]. The involvement of RAB27A in vesicle secretion

was later confirmed in numerous tumour cell lines: mur-

ine melanoma [65�] and mammary carcinoma [66�], and

human squamous cell carcinoma cells [35]. These RAB

proteins are thought to function in MVB docking to the

PM, which is required for eventual fusion of the two

membranes, to allow secretion of the vesicles present in

this compartment.

It is important to stress that RAB27A controls not only

exosome secretion, but also the secretion of a subset of

soluble factors. For instance, inhibition of RAB27A

decreased secretion of the soluble pro-metastatic factor

matrix metalloproteinase 9 in 4T1 mammary carcinoma

cells [66�], as well as pro-angiogenic placental growth

factor 2, platelet-derived growth factor A and osteopontin

in the B16-F10 melanoma [65�]. Thus, using RAB27A

inhibition alone is not sufficient to demonstrate that a

physiological effect is due to exosome secretion, and

therefore the possible roles of other RAB27A-dependent

secretions must be evaluated. For RAB11 and RAB35,

their potential roles in secretion of soluble proteins were

not analysed in the articles reporting their effects in

exosome secretion [61,62��] and thus further work is

required to clarify this.

After docking of two different intracellular compart-

ments, soluble NSF-attachment protein receptor

(SNARE) complexes are instrumental in allowing fusion

of the lipid bilayers [67]. The SNARE proteins SNAP-23,

VAMP-7 and VAMP-8 are involved in Ca2+-regulated

fusion of secretory lysosomes with the PM in different

cell types [68–70]. However, SNAREs do not necessarily

mediate the fusion of MVBs with the PM during exosome
www.sciencedirect.com
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Table 2

Published studies on exosome secretion (italics highlight tumour cell models)

Name Major intracellular

localization

Cell type used

in the study

Markers used for vesicle

definition

Tools used for

inhibition

Refs

RAB family

RAB2B Endoplasmic reticulum

and Golgi apparatus.

HeLa-CIITA CD63, MHC II, CD81 shRNA [63��]

RAB5A Early endosomes HeLa-CIITA CD63, MHC II, CD81 shRNA [63��]

RAB7 Late endosomes MCF-7 CD63, Syntenin-1,

Syndecan 1 C-Terminal

Fragment

siRNA [36�]

RAB9A Late endosomes HeLa-CIITA CD63, MHC II, CD81 shRNA [63��]

RAB11 Recycling and early

sorting endosomes

K562 TFR, HSC70,

Acetylcholinesterase

activity

Dominant

negative

mutant

overexpression

[61]

RPE1 Flotillin-1, Anthrax Toxin

Lethal Factor

siRNA [37��]

RAB27A Late endosomes and

lysosome-related

organelles

HeLa-CIITA CD63, MHC II, CD81 shRNA [63��]

4T1, TS/A ALIX, HSC70, CD63,

TSG101

shRNA [66�]

B16-F10,

SK-Mel-28

ALIX, TSG101 shRNA [65�]

SCC61,

SCC25-H1047R

– shRNA [35]

RAB27B Late endosomes and

lysosome-related

organelles

HeLa-CIITA CD63, MHC II, CD81 shRNA [63��]

RAB35 Recycling endosomes Oli-neu PLP siRNA and

dominant

negative mutant

overexpression

[62��]

RPE1 Flotillin-1 siRNA [37��]

Primary

oligodendrocytes

ALIX, PLP siRNA [64]

SNARE family

VAMP7 Lysosomes and late

endosomes

K562 Acetylcholinesterase

activity

Truncated

VAMP7

overexpression

[71]

YKT6 Early and recycling

endosomes

HEK293 WNT3A, CD81 siRNA [34]
secretion. While VAMP7 is essential for the release of

acetylcholinesterase-containing EVs in K562 erythroleu-

kemia cells [71], inhibition of VAMP7 in MDCK cells

impaired lysosomal secretion but not the release of exo-

somes [72]. More recently, the R-SNARE protein YKT6

was found to be required for secretion of exosomes

carrying the WNT3A morphogen in HEK293 cells

[34], and these results await confirmation in other models.

Again, the heterogeneity in the requirement for docking

and fusion machineries could suggest the coexistence of

different multivesicular compartments within the cell.

RAB11 and RAB35 are described as associated with

recycling and early sorting endosomes, whereas RAB27A

and RAB27B are associated with the late endosomal and

secretory compartments [60]. Thus, we would like to

propose that different RABs are involved in docking of

ILV-containing endosomes of different maturation stages

along the endosomal pathway (Figure 1). These different
www.sciencedirect.com 
MVBs could give rise to different subpopulations of small

EVs. This could explain RAB27A-independent secretion

of a subpopulation of vesicles from tumour cells [73��], or

of anthrax toxin-containing exosomes from human epi-

thelial cells [37��].

Future challenges: separation of the different
subtypes of exosomes
It recently became clear that all currently used protocols

for exosome purification actually co-purify different

subtypes of EVs. Demonstrations of this caveat were

published recently, by three independent groups

[73��,74��,75��] and came from the careful analysis of

the behaviour of exosomes upon floatation into a sucrose

gradient. Although the density of exosomes in such

gradients has been described for at least a decade as

ranging between 1.11 and 1.19 g/ml, recent articles show

that different types of EVs are present within this range of

densities. Two reports showed that some EVs in the
Current Opinion in Cell Biology 2014, 29:116–125
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exosome pellet display similar equilibrium densities but

different kinetics to reach this density, and thus are likely

compositionally different [74��,75��]. We confirmed this

observation, and also showed that the vesicles equilibrat-

ing at lower density fractions (1.11 g/ml) were less de-

pendent on RAB27A for their secretion than those

floating at 1.14 g/ml [73��] consistent with the presence

of at least two subpopulations of EVs within the purified

exosome population. An urgent need in the field is to

ameliorate already existing protocols, or to establish new

methods that will allow separate analysis of the different

subsets of EVs.

In all studies published thus far, several fractions recov-

ered after floatation of exosomes into a sucrose gradient

are pooled together to study the presence of different

exosome markers and to perform functional assays.

Further improvement could be now to analyse separately

the vesicles recovered in 3–5 fractions of the expected

exosome density. Immuno-capture of specific subsets of

vesicles has been also performed, using CD63 as a marker

of MVB-derived vesicles [63��], or markers of the apical

versus basolateral surface of polarized tumour cells [76].

Although powerful, these approaches will benefit from

the future identification of specific surface markers of

each subtype of EVs. Finally, polymer-based kits are now

commercialized for vesicle isolation. Although this

method is less laborious and time-consuming, and appar-

ently provides a higher rate of recovery, especially of

extracellular RNAs [77], we suspect that even more

heterogeneous types of particles present in conditioned

medium or body fluids will be recovered with this

method, especially lipoproteins, and cell debris, and

optimization is still called for.

Conclusions/closing remarks
A number of discoveries in recent years have increased

the interest of cell biologists in exosomes: first the con-

firmation of this secretory pathway within immune cells

[8], then their identification in body fluids [78] hence

their existence in vivo, and finally, the discovery of their

nucleic acid (RNA) content [12��]. These breakthroughs

led to a rise in the number of exosome-related studies in

the literature, but also to a general rise in interest in all

types of EVs. Interestingly, so far, no universal mechan-

ism of either biogenesis or secretion of exosomes has

emerged. It remains to be determined whether the differ-

ences in mechanisms described by different groups are

due to cell-intrinsic specific mechanisms of exosome

formation and secretion, or to differences in the nature

of the vesicles analysed. Finally, a crucial question

remains unsolved: the physiological relevance of exosome

and/or PM-derived vesicle release in vivo. The answers to

these questions will only become possible when the

outstanding cell biology issues have been solved, especi-

ally what drives the fate of MVBs (fusion with the PM or

with lysosomes), and how MVBs fuse with the PM.
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