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Abstract Cancer cells emit a heterogeneous mixture of
vesicular, organelle-like structures (microvesicles, MVs)
into their surroundings including blood and body fluids.
MVs are generated via diverse biological mechanisms
triggered by pathways involved in oncogenic transforma-
tion, microenvironmental stimulation, cellular activation,
stress, or death. Vesiculation events occur either at the
plasma membrane (ectosomes, shed vesicles) or within
endosomal structures (exosomes). MVs are increasingly
recognized as mediators of intercellular communication due
to their capacity to merge with and transfer a repertoire of
bioactive molecular content (cargo) to recipient cells. Such
processes may occur both locally and systemically, con-
tributing to the formation of microenvironmental fields and
niches. The bioactive cargo of MVs may include growth
factors and their receptors, proteases, adhesion molecules,
signalling molecules, as well as DNA, mRNA, and micro-
RNA (miRs) sequences. Tumour cells emit large quantities
of MVs containing procoagulant, growth regulatory and
oncogenic cargo (oncosomes), which can be transferred
throughout the cancer cell population and to non-
transformed stromal cells, endothelial cells and possibly to
the inflammatory infiltrates (oncogenic field effect). These
events likely impact tumour invasion, angiogenesis, metas-
tasis, drug resistance, and cancer stem cell hierarchy.

Ongoing studies explore the molecular mechanisms and
mediators of MV-based intercellular communication (cancer
vesiculome) with the hope of using this information as a
possible source of therapeutic targets and disease biomarkers
in cancer.
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Abbreviations
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TF Tissue factor
EGFR Epidermal growth factor receptor
EGFRvIII Mutant EGFR (variant III)
GBM Glioblastoma multiforme
IL-6 Interleukin-6
IL-8 Interleukin-8
mRNA Messenger ribonucleic acid
PS Phosphatidylserine
RTK Receptor tyrosine kinase
VEGF Vascular endothelial growth factor
VEGFR-2 VEGF receptor 2

Modes of intercellular communication—the emerging
role of microvesicles

In a multicellular organism, biological functions are executed
by complex assemblies of cells, the actions of which must be
coordinated by intercellular communication. In this regard,
the exchange of signals is usually ascribed to specific
molecules (soluble or immobilized) and their corresponding
cognate receptors. This exchange may entail a direct cell-to-
cell contact (adhesion, juxtacrine interactions), or gradients
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formed by soluble (paracrine) mediators, which may also
circulate in blood and body fluids and act in a regional or
systemic (endocrine) manner. Such information translates into
activation of intracellular signalling networks and changes in
the behaviour of individual cells and their populations [1, 2].
Indeed, molecular pathways of cell–cell communication play
an important role in development, health and disease
including cancer [9, 86].

It is increasingly clear, however, that cells may also
communicate via supramolecular complex mechanisms
involving the exchange of cellular fragments, membranes
or specialized organelles. The latter could be vesicular
(microvesicles, MVs) [3, 13], tubular (nanotubes/TNTs) [9],
or filopodial (cytoneme) [4] in nature depending on their
biogenesis and whether they are separated or contiguous
with the emitting cell. The underlying process of the
intercellular transmission of proteins, lipids or nucleic acids
encapsulated in plasma membranes is often referred to as
trogocytosis, or cellular synapse [5, 8]. Notably, this
transfer entails ‘pre-programmed’ combinations of soluble
or insoluble molecules, which are uniquely protected from
degradation and dispersion in the extracellular space [18].

Of particular interest are mechanisms involving MVs,
spherical or cup-shaped membrane structures that originate
from ‘donor’ cells and may travel considerable distances in
the interstitial space until they undergo uptake, fusion or
interaction with a range of ‘acceptor’ cells [3, 6, 7, 10–14].
MVs can also reach cells located at a distance by being
released into the circulating blood, lymph, cerebrospinal
fluid (CSF), urine, glandular secretions and other fluids.
The effects MVs exert on various ‘acceptor’ (target) cells
are rather diverse and may include sharing of interactive,
signalling and enzymatic activities that would otherwise be
compartmentalized to individual cells by their gene expres-
sion patterns [87]. This mechanism may explain a level of
coordination and molecular integration within multicellular
populations, as is often observed in heath and disease. In
this article, we will consider the various possible roles of
MVs in intercellular communication in general and espe-
cially as it relates to pathogenesis, progression, and
therapeutic responses in cancer, recognizing that profound
qualitative and quantitative differences may exist between
various specific disease contexts [9].

Biogenesis and heterogeneity of microvesicles

MVs have long been regarded as ‘cellular debris’, but this
view is rapidly changing [10–13, 18, 22, 66]. The release of
MVs was first described by Wolf in 1967 who noted
procoagulant particulate matter around activated blood
platelets [20]. Subsequently, similar organelles, referred to
as exosomes, were implicated by Trams as carriers of 5′

exonucleotidase associated with glioma cells [15]; further-
more, the groups of Johnstone [41] and Stahl [17]
established exosomes as a mechanism involved in the
removal of spent transferrin receptors from differentiating
reticulocytes [6, 41].

Different biological circumstances under which formation
of MVs (vesiculation) has been observed reflect the diversity
of their biogenesis, structure and function (Fig. 1). Thus,
cellular activation, transformation, stress, or programmed
cell death are associated with a different output and nature of
vesicular structures [9]. Indeed, it is clear that MVs are
heterogeneous, and this has led to the usage of multiple
names for their designation under different experimental
settings [9, 18]. Some of the most frequently encountered
descriptors are MVs, microparticles, ectosomes, exosomes,
exosome-like vesicles, shed vesicles and most recently
oncosomes [6, 18, 41]. Other names have also been used
in various specific settings including argosomes, prominino-
somes, P4 particles, prostasomes, and several others [6, 9,
41]. To some extent, this diversity reflects the culture of
different fields in which MVs have been studied, but also
substantial biological diversity of the underlying biological
process. Indeed, MVs originate through at least three distinct
mechanisms: (a) breakdown of dying cells into apoptotic
bodies, (b) blebbing of the cellular plasma membrane
(ectosomes) and (c) the endosomal processing and emission
of plasma membrane material in the form of exosomes [6,
18, 22, 41].

Apoptotic bodies are relatively large (up to 4,000 nm in
diameter) and contain genomic DNA and intact organelles.
Since they result from cellular breakdown, their generation
has self-limiting dynamics, but is not devoid of biological

Fig. 1 Pathways of cellular vesiculation. Two main types of micro-
vesicles, ectosomes and exosomes, emerge from cellular membrane
and endosomal system, respectively (see text). Ectosomes are thought
to be associated with lipid rafts and are larger in size. Exosomes
originate within endosomal multivesicular bodies (MVBs), which are
redirected to the cellular surface from the lysosomal degradation
pathway
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influences [19]. Indeed, the cargo of apoptotic MVs
remains protected from degradation and is often ingested
by tissue phagocytes or neighbouring cells.

Ectosomes are MVs that emerge from the outward
blebbing of the cellular plasma membrane [13, 18]. These
MVs (also known as shed vesicles or microparticles) may
range in sizes between 100 and 1,000 nm in diameter and
are characterized by the prominent exposure of phosphati-
dylserine (PS) residues on their outer surfaces, among other
markers (Table 1). Ectosome-like MVs have been com-

monly associated with membrane regions containing high
levels of cholesterol and signalling complexes, often
referred to as lipid rafts [18, 25]. Indeed, certain lipid raft-
associated molecules can be found in the cargo of these
MVs including tissue factor (TF) and flotillin-1 [25].
Depending on the cell type, membrane MVs may be rich
in cellular lineage markers, β1 integrin, matrix metal-
loproteases (MMPs) and their activators (EMMPRIN), P-
selectin glycoprotein ligand 1 (PGSL1), cytokines and
chemokines (e.g. interleukin-1β (IL-1β) and IL-8), vascu-

Table 1 Examples of molecular markers associated with different classes of microvesicles [13, 22, 41, 66, 99, 118]

Molecular markers of microvesicles

Markers Functions References

Ectosomes

Tissue factor
(TF)

Coagulation and angiogenesis [25, 87, 98,
120]

Flotillin-1 Lipid raft molecule [25, 80]

PSGL1 P selectin glycoprotein ligand 1-cell adhesion [25, 121]

β1 integrin Cell adhesion molecule [32, 66, 77]

Interleukin-1β Cytokine involved in inflammation [32, 66]

MMP2 Matrix metalloproteinase involved in degradation of the extracellular matrix [66, 122]

MMP9 Matrix metalloproteinase involved in degradation of the extracellular matrix [34, 66, 122]

EMMPRIN Extracellular matrix metalloproteinase inducer (CD147/basigin) [34]

ARF6 GTP-binding ADP ribosylation factor involved in remodelling of membrane lipids and actin [77]

MUC1 Mucin associated with pathogen protection [52]

CB1 Cannabinoid G protein coupled receptor [32]

Lineage
markers

CD61 (platelets); glycophorin A (red blood cells); CD66e (granulocytes); CD14 (monocytes); CD62e
(endothelium)

[52, 68]

Exosomes

CD9 Tetraspanin–cell surface glycoprotein [79]

CD37 Tetraspanin–cell surface glycoprotein [80]

CD63 Tetraspanin–cell surface glycoprotein [37, 70, 80]

CD81 Tetraspanin–cell surface glycoprotein [80]

CD82 Tetraspanin–cell surface glycoprotein [80]

CD106 Tetraspanin–cell surface glycoprotein [81]

Tspan8 Tetraspanin–cell surface glycoprotein [81]

HSP70 Heat shock protein [6, 123, 124]

HSP90 Heat shock protein [37, 46, 124]

Caveolin-1 Scaffolding protein of lipid rafts [125, 126]

Rab-5a GTPase involved in endocytosis [37, 89]

Rab-5b GTPase involved in endocytosis [126, 127]

Rab27A Secretory GTPase involved in cell invasion [46]

PLP Proteolipid protein of oligodendroglial cells [37, 128]

Alix Protein involved in late endocytosis [37, 79]

TSAP6 P53 transcriptional target involved in exocytosis [76, 127]

Tsg101 Protein involved in ubiquitination-dependent endocytosis [6, 37, 64]

MHC Class I/II Immune recognition/regulation [129]

Flotillin-1 (also
present in
ectosomes)

Lipid raft molecule [42, 76]
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lar endothelial growth factor (VEGF) and fibroblast growth
factor 2 (FGF2) [30, 32, 61, 66, 88]. Their relatively large
size, surface PS, and the presence of specific molecules are
often used to distinguish these MVs from exosomes
(Table 1).

Biogenesis of ectosome-like MVs has been analysed in
various settings. Paradigmatic, in this regard, are studies
demonstrating the release of procoagulant microparticles
(MPs) from activated platelets engaged in processes of
haemostasis and thrombosis [30]. The significance of this
process is illustrated by a rare congenital bleeding disorder,
known as Scott syndrome, in which platelet microvesicu-
lation is permanently altered [31]. This results from a defect
in the enzymatic activity responsible for the maintenance of
phospholipid asymmetry in the plasma membrane [30] such
that the active translocation of PS residues from the inner to
the outer leaflet of the surface bilayer is impaired causing a
deficiency in vesiculation. It is now understood that the
enzymes directly involved in ectosomal vesiculation of
platelets include aminophopholipid translocase, scramblase,
floppase, and calpain [30].

Another cellular paradigm that may be informative with
respect to ectosome-like vesiculation has been recently
described in the context of inflammatory responses. For
instance, in the case of CNS phagocytes (microglia), acidic
sphingomyelinase (aSMase) is both necessary and sufficient
for ectosome release. In this case, activation of the purinergic
P2X7 receptor upon exposure to ATP acts as a triggering
stimulus [32]. It is proposed that dying cells release ATP,
which stimulates microglia to release MVs containing
proinflammatory cytokines (IL-1β) and to orchestrate the
clearance of cellular debris. These processes are blocked by
inhibitors of p38 MAPK and Src kinase [32]. This is
intriguing as the respective signalling modules (e.g. src) are
also involved in oncogenic signalling events. Whether
vesiculation of cancer cells involves a similar src/aSMase-
dependent mechanism is currently being explored [21].

Exosomes are markedly different from membrane MVs
and ectosomes with respect to their mechanism of gener-
ation, structural properties, and molecular cargo [9, 13, 18,
89]. The phospholipid composition of exosomes is distinct
from that of ectosomes such that a lower abundance of PS
residues is exposed on the outer leaflet. Exosomes are also
smaller than membrane MVs with a diameter ranging from
30 to 100 nm [22]. Arguably, smaller vesicles may also be
generated by mechanisms separate from the endocytic
pathway formation of exosomes, for example, the biosyn-
thesis of CD133-postive promininosomes [23]. However,
these distinctions require further analysis. Exosomes trans-
port different cargo compared to other MVs emanating
from the same cell; indeed, reports confirm the selective
enrichment of specific tetraspanins (CD63; Tspan8) and
heat shock proteins (HSP70) in exosomes [70, 90, 123].

These differences in size, membrane composition, and
cargo are often used for preparation and characterization
of exosomes and other MVs (Tables 1 and 2).

Biogenesis of exosomes is controlled by a distinct
cellular pathway [6, 10, 13], the initial steps of which are
controlled by the endosomal sorting complex required for
transport (ESCRT) [36]. These signalling events involved
in the recycling of membrane receptors lead to formation of
inward invaginations of plasma membrane microdomains
coated with clathrin protein (clathrin-coated pits) [24].
These evolve into intracellular vacuoles (early endosomes)
that, under control of ESCRT, mature into the late endo-
some/multivesicular bodies (MVBs). At this stage, the
endosomal cargo has four potential fates: it can be (1)
recycled back to the plasma membrane, (2) sequestered in
intraluminal vesicles (ILVs) within MVBs [6, 13, 22], (3)
degraded upon fusion of MVBs with lysosomes and (4)
released as exosomes following the redirection and fusion
of MVBs with the plasma membrane.

Out of the four distinct ESCRT complexes (ESCRT-0,
ESCRT-1, ESCRT-2 and ESCRT-3) involved in endosomal
pathway, ESCRTs-0, -1 and -2 have ubiquitin-interacting
modules that are necessary for the sequential sorting of
cargo destined for degradation [36], while exocytic MVBs
may form in an unbiquitination-independent manner [22].
An alternative pathway of exosome formation may involve
bioactive membrane lipids such as the sphingomyelin
metabolite, ceramide, the synthesis of which is catalyzed
by neutral sphingomyelinase (nSMase2) [37].

Mechanisms involved in the assembly
of the microvesicle cargo

The molecular content of MVs is defined by processes of their
formation as well as the state and nature of their parent cell.
MV cargo includes a variety of molecular entities, which are
not a random sample of the molecular repertoire of the
originating cell. Instead, these include a distinct combination
of lipids, proteins and nucleic acids (messenger ribonucleic
acid, mRNA; microRNA, miR; and DNA) [22, 70, 72, 85]. It
is generally believed that lipid rafts give rise to the formation
of ectosomes, while endocytic clathrin pits are representative
of at least one mechanism that initiates the formation of
exosomes. Studies demonstrating reduced ectosome release
following depletion of plasma membrane cholesterol support
ectosome biogenesis from lipid rafts [13, 25]. Alternative
pathways have also been proposed to function in the sorting
of cargo into ectosomes such as endosomal recycling [77, 91].

On the other hand, the content of exosomes follows the
aforementioned endocytic pathway, which can be subdi-
vided into ubiquitin-dependent and -independent mecha-
nisms [10]. It is well described that ESCRT complexes sort
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ubiquitinated cargo into ILVs targeted for lysosomal
degradation [26]. While the role of this pathway in
exosome formation and sorting of mRNA and miRNA is
unknown, the ESCRT-2 complex can bind directly to RNA
independent of endosomal sorting and ESCRT-1/3 [27]. In
spite of the recent progress in cataloguing the content of
MVs and dissecting the processes involved in their
formation, the specific cellular mechanisms that mediate
the sorting of molecular species into distinct classes of MVs
is unknown. Nonetheless, many components of MV cargo
have been implicated in cancer (Table 3), especially since
cancer cells have a particularly high rate of vesiculation [3,
18, 66, 92–94].

Microvesicle function

The wealth of molecular cargo contained in MVs raises the
question as to their biological role. In this regard, several
mutually non-exclusive hypotheses have been put forward
to explain the functional importance of vesiculation in
various cellular contexts. It should be mentioned that while
these concepts are reinforced by compelling molecular and
cellular data, direct evidence for the requirement of MV
formation in vivo is presently rather scarce. In this regard, it

is thought provoking that null mutations affecting mole-
cules strongly implicated as key biological effectors within
MV cargo (e.g. TF, FGF, MMPs or VEGF) usually lead to
different and often more severe consequences than defi-
ciencies affecting the vesiculation process itself. The latter
is exemplified by the genetic disruption of sphingomyeli-
nases (asmase and nsmase) [28], scramblase, and other
enzymes implicated in MV formation [29]. Likewise,
clinical conditions (Scott, Castaman or Griscelli syn-
dromes) involving various aspects of impaired vesicle
formation do not necessarily recapitulate deficits in what
is often viewed as key cargo molecules found in various
MVs. Furthermore, in vivo administration of drugs that
either block MV generation (Imipramine) [32] or their
uptake (Diannexin) [38] often leads to effects that may be
reminiscent of, but not identical to, those observed during
in vitro studies on MV function [3, 9, 14]. The same cells
may exhibit different patterns of vesiculation in vivo and in
vitro [39], which further argues that our understanding of
what MVs actually do under realistic conditions remains to
be studied more carefully.

However, it is becoming increasingly clear that the
networks of intercellular communication via MVs have a
potential to influence processes as diverse as cell polarity,
differentiation, migration, chemotherapy resistance, immu-

Table 2 Examples of preparative and analytical methods used in studies on microvesicles [13, 22, 25, 38, 59, 138]

Analysis of microvesicles

Approach Method References

Separation Differential centrifugation [32, 37, 118, 130, 131]
Sucrose gradient centrifugation

Annexin V-coated magnetic beads

Immunoisolation

Precipitation technologies (ExoQuick)

Filtration technologies (ExoMir)

Detection Scanning electron microscope [6, 25, 32, 37, 38, 61, 70, 72, 80, 87, 116, 121, 132, 133]
Transmission electron microscope (immunogold labelling)

Western blot analysis of MV markers

Flow cytometry (FACS)

Impedance cytometry

Cholera toxin B (CTxB) staining

Quantification PKH26/PKH67 staining [32, 61, 72, 87, 121, 126, 134, 135]
FM1-43 staining

DiO and DiD labelling

ELISA assays (tissue factor, Rab-5b/Exotest, GFP)

Nanoparticle tracking analysis (NPA)

Flow field-flow fractionation (FFFF)

Uptake Detection of molecular cargo transfer (FACS, Western, reporter
gene expression)

[25, 38, 61, 72, 87]

Detection of fluorescent tag transfer (PKH26, PKH67)

Membrane fusion assays (NBD-PE*, Rh-PE* and DOTAP*)
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noregulation, inflammation, coagulation, angiogenesis,
and cancer metastasis [3, 6, 7, 9, 10, 95]. Several
scenarios have been proposed to explain the biological
roles of various MVs. First, MVs could be viewed as a
highly efficient mechanism of molecular ‘dumping’ [40].
Indeed, removal of superfluous or harmful molecules by
exosome formation is well described; for instance, in the
case of transferrin receptors that must be rapidly removed
from reticulocytes to allow their differentiation into
mature red blood cells [41]. Similarly, MVs allow rapid,
‘defensive’ shedding of complement attack complexes
from the plasma membrane of cells that have undergone
opsonization, thereby protecting them from destruction
[13]. Removal of β-catenin from cells by production of

exosomes under control of tetraspanins has also recently
been described as an alternative and unconventional
pathway that regulates Wnt signalling [42].

MVs have been implicated as a unique vehicle for the
release of soluble molecules, which are otherwise unable
to interact with the classical secretory pathway due to the
absence of a signal peptide in their sequences (IL-1β or
basic FGF) [32, 43]. In addition, microvesicular transport
extends the extracellular half-life of secretable molecules
(e.g. VEGF), alters their gradient formation (Wnt and
MMPs), and concentrates their activities at specific sites
[46, 62, 95].

Perhaps most important and intriguing is the possibility
that MVs may serve as a unique mechanism (or set of

Table 3 Examples of microvesicle cargo implicated in cancer [3, 9, 66, 95]

Cargo Function References

Proteins

Soluble factors

VEGF, FGF, IL-8 Angiogenic factors [49, 66, 72]

IL-6, IL-1 Inflammatory cytokines [32, 72]

MMPs, TIMPs Regulators of proteolysis [56, 72]

Membrane receptors

CCR5 Chemokine receptor [53]

CCR6 Chemokine receptor [82]

TNFR1 (p55) Cytokine receptor [83]

EGFR Receptor tyrosine kinase [61, 136]

AXL Kinase involved in leukaemia [43]

FasL (Fas ligand) Death ligand [96, 137]

Oncoproteins and tumour suppressors

EGFR Oncogenic EGFR [38, 61, 72, 136]

EGFRvIII Mutant EGFR [61]

HER2 Oncogenic RTK [82, 97]

MET Oncogenic RTK [55, 82]

K-ras Oncogenic GTPase [55]

Akt Oncogenic kinase [116]

PTEN Tumour suppressor [55]

Lipids

Sphingomyelin Cell signalling, angiogenesis [84]

Nucleic acids

mRNA

Transcripts for VEGF, HGF, IL-8 Angiogenic factors [70, 72]

Transcripts for EGFRvIII Oncogenic receptor [72]

microRNA

Elements of cellular miR-ome Several miR sequences are detected in exosomes emanating from cancer cells [70, 72, 118]

Oncomirs (miR-520g) Brain tumour cells release microvesicles containing oncogenic miR-520g [78]

DNA

mtDNA Mitochondrial DNA found in exosomes of tumour cells [79]

gDNA Genomic DNA found in apoptotic microparticles [85]
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mechanisms) for the release of proteins that are bone fide
insoluble. This includes membrane antigens involved in
immunomodulation [6, 96], transmembrane receptors
(CCR5; TF; epidermal growth factor receptor, EGFR;
HER-2; and AXL) [53, 61, 97, 98], transmembrane ligands
(Dll4 [45]) and other cell surface molecules [66, 93]. As
these molecules are involved in a number of crucial
biological processes, their release in MVs may place them
in the context of other cells, with which they can change/
expand the scope of their intrinsic biological activities
(Table 3 [9, 18, 22, 95]). Furthermore, MV-mediated release
provides a platform for the controlled enrichment and
assembly of multimolecular complexes and molecular
combinations [46] with a pre-programmed composition of
proteins, lipids, and nucleic acids. In this regard, the
biological activities encapsulated in MVs may result in
effects that are quantitatively and qualitatively different from
the sum of effects predicted for their individual molecular
constituents. Such combinatorial interactions between ele-
ments of MV cargo and target cells may potentially lead to
outcomes otherwise impossible to achieve.

Microvesicles as mediators of intercellular
communication

With the possible exception of procoagulant MVs (micro-
particles) harbouring TF or mucins [31, 47], which mainly
interact with ‘soluble’ components of the coagulation
system, other biological effects of MVs are related to their
interaction with cells [95, 99]. Such interactions may occur
locally, regionally or systemically and are often of an
‘external’ nature, namely, they entail a simple surface-to-
surface contact and stimulation (between the target cell and
the MV surface). Instead of physical contact, the influence
of MVs on the target cell may also involve pericellular
discharge/activation of the bioactive cargo [12, 46, 66]. For
instance, this may involve proteolytic remodelling of the
extracellular microenvironment, modulation of ligand-
receptor interactions, and a variety of other effects that
could change the behaviour of target cells and properties of
their surroundings (niches) [46]. In some instances, such
interactions could be rather complex and multifactorial. The
recently described Rab27B-regulated exosomal release of
MMPs and HSP90a from metastatic cancer cells is believed
to control invasive cellular behaviour by inducing changes
in the extracellular matrix (ECM) as well as through
modification of growth factor responses [46]. Likewise,
procoagulant MVs may facilitate tumour initiation, inva-
sion, and dissemination by activating the clotting cascade
extracellularly and coagulation-dependent signalling intra-
cellularly [100]. MV-mediated emission of various factors
including tetraspanins, chemoattractants, adhesion mole-

cules and proteases from cancer cells, platelets, and other
cellular sources contributes to metastatic regulation in
several experimental systems [93, 101]. As mentioned
earlier, MVs may also act as important reservoirs of
cytokines and mediators of inflammatory and immune
responses [6, 32].

Bioactive ligands exposed on the MV surface are thought
to be responsible for several important regulatory processes;
for instance, direct stimulation of endothelial cells with MV-
associated CD40 ligand (CD40L) may provoke angiogenic
responses at sites of atherosclerosis [102]. Recent evidence
suggests that delta-like 4 (Dll4), a transmembrane Notch
ligand, is also exposed on the surface of exosomes and thus
may evoke angiogenic changes by interacting with Notch
receptors expressed by endothelial cells [45]. Contact with
the cell death ligand (FasL) exposed on certain tumour cell-
derived MVs is lethal for Fas-expressing lymphoid cytotoxic
effector cells, a process implicated in the induction of
immunotolerance in colorectal cancer and possibly other
malignancies [48]. In all of these instances, vesiculating cells
generate a field of biological influence by extending the
reach of molecular mediators, which would otherwise be
confined to their cellular sources.

These influences may affect recipient cells via a random
distribution of MVs in tissue and body fluids, or more
directional MV homing/uptake mechanisms. For instance,
an acidic pH commonly present in hypo-perfused areas of
solid tumours may lead to localized disruption of MVs and
consequent discharge of their proangiogenic and pro-
inflammatory cargo such as VEGF and other factors [49].
MVs may also be directed to specific sites due to the
molecular addresses they carry on their surfaces (below)
[50, 51].

MV-mediated intercellular communication extends far
beyond external contact. Indeed, one of the most tantalizing
consequences of cellular vesiculation is the physical
transfer of bioactive molecules between cells via MV-
based mechanisms [11, 14, 18, 95]. Such MV uptake may
entail a physical integration of the MV and target cell
plasma membranes or penetration of intact MVs into the
cell interior [12, 14]. These processes may allow the
exchange and ‘sharing’ of molecules (proteins, nucleic
acids, and lipids) that would otherwise be sequestered by
MV-manufacturing ‘donor’ cells, and thus propagation
within cellular populations may affect their collective
phenotypes and properties.

The nature, directionality, and efficiency of this molecular
exchange depend on several factors. For instance, the physical
properties of vesicular plasma membranes affect the fusion
rate between MVs and target cells, which may increase their
MV uptake under acidic pH [103]. In some instances, MV
transfer could also be directed by specific molecular
addresses, for example, a high concentration of PS on the
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surface of certain MVs (e.g. ectosomes or procoagulant
microparticles) may enable their recognition by PS receptors
(PSRs) on the surface of specific types of target cells. Many
of such PSRs have been described mainly within the context
of phagocytosis of apoptotic cells by mononuclear cells;
examples of such PSRs include Tim1, Tim4, stabilin 2 and
BAI1 [50, 104], at least some of which could be expressed
more widely and may be involved in the uptake of MVs
[50]. Indeed, blocking PS often obliterates MV incorporation
by endothelial cells, platelets and cancer cells [25, 38, 61,
87]. A corollary to this point would be that phagocytes could
be particularly susceptible to molecular influences of PS-
positive MVs, beyond their simple destruction. It has also
been proposed that Tim1/4 receptors on two adjacent cells
could allow formation of MV/exosome bridges, thereby
promoting additional (indirect) intercellular interactions [50].
Similarly, the presence of PSGL-1 (P-selectin ligand) on the
surface of procoagulant MVs directs them to P-selectin-
expressing platelets and endothelial cells [121].

Biological consequences of microvesicle-mediated
molecular transfer

There is mounting evidence for the biological impact of
microvesicular transfer of several classes of molecules, the
examples of which deserve some commentary.

Proteins are amongst the most studied functional
elements of MV cargo. In this regard, chemokine receptors,
especially CCR5 [53] or CXCR4 [14, 105], which are
known as portals for viral (HIV) infection, have recently
been shown to undergo vesicular transfer to heterotypic
cells. Such transfer engenders susceptibility to viral
infection on cells that are normally resistant to HIV
penetration, such as monocytes and endothelial cells [6,
14, 53, 105]. Moreover, transfer of growth factor as well as
cytokine and chemokine receptors may alter cellular
responsiveness to their respective ligands, albeit often in a
complex fashion, for example, by promoting receptor
turnover rather than protracted signalling [14]. Conversely,
MVs may also contain and transfer regulatory polypeptides
such as IL-1β [32] and CCL5/RANTES [54] to cells that
do not express these proteins, resulting in changes in
cellular responses (e.g. during inflammation). Microvesic-
ular sharing of lineage markers (GpIIb/IIIa [106, 107])
between platelets and neutrophils as well as the transfer of
MHC molecules between dendritic cells [108] are examples
of intercellular sharing of molecules involved in inflamma-
tion and antigen recognition, respectively.

Proteins contained in MVs are proposed to exert a
multiplicity of effects during complex processes such as
angiogenesis [58, 59, 101]. For example, a regulated
dissolution of the vascular basement membrane and

surrounding extracellular matrix is thought to be facilitated
by MV-mediated delivery of proteases (e.g. MMP9, MMP2
and MT1-MMP) [56] and their activators (EMMPRIN
[57]). MVs also carry soluble, proangiogenic regulators
including VEGF [49, 58], bFGF [58], PDGF [58] and other
polypeptides [34]. Proangiogenic IL-8 and hepatocyte
growth factors (HGFs) can be induced in various cells
upon their uptake of platelet-derived MVs [101]. The
aforementioned trafficking of exosomes containing Tspan8
[59] or Dll4 [45] may affect vascular sprouting and
endothelial tip cell formation, respectively. Moreover,
MVs released from endothelial progenitor cells may
instruct resident vascular cells to initiate angiogenesis
[60], while in other instances, MVs were found to contain
oncogenic proteins (EGFR) [61] capable of modulating and
reprogramming endothelial cell responses in vitro.

The examples of molecular transfer via MVs have also
been documented during developmental and differentiation
processes [11, 14, 71, 109]. Thus, vesicular distribution of
wingless (Wnt) in the developing Drosophila wing has
been implicated in formation of morphogenic gradients
[62], while intercellular transfer of MV-associated hedge-
hog (Hh) protein was proposed to induce leukemic stem
cells to differentiate [63].

Spreading drug resistance within the cancer cell popula-
tion could be one of the most tantalizing examples of
multicellular phenotypic adaptation influenced by the MV
transfer. Thus, MVs are thought to act as carriers of proteins
involved in multidrug resistance, such as ABC transporters
(e.g. P-glycoprotein, Pgp) [44] and drug metabolizing
enzymes [64]. Passage of these proteins from cell-to-cell
could serve to rapidly change the responses of tumours to
anticancer chemotherapeutics. Also under physiological
conditions, MVs mediate transfer of phenotype-modifying
enzymes, including the passage of carbonic anhydrase from
epithelium to Payer's patches in the intestine [65]. MVs are
also involved in the cellular exchange of transcription
factors, such as peroxisome proliferator-activated receptor
gamma (PPAR) and retinoid receptor (RXR) [33], which
may profoundly alter the gene expression profile of the
recipient cells.

The aforementioned MV-mediated exchange of growth
factors [66], their receptors [3, 61] and survival molecules
[61, 110] may promote cooperative events and affect
‘collective’ viability within the heterogenous cellular
populations. On the other hand, contact with MVs
harbouring FasL [96] or caspase 1 may have the opposite
(competitive and pro-death) effect [67].

MVs present in the circulating blood are an important
mechanism of locating coagulation effector molecules in
their relevant cellular contexts. Indeed, the MV-mediated
transfer of TF between monocytes, cancer cells, platelets,
and the endothelium represents one of the best character-
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ized processes in this regard [25, 87]. Normally, circulating
MVs originate mainly from platelets; however, they may
also emanate from inflammatory cells, cancer cells and
other sources [68]. Exposed PS, TF, epithelial mucins, and
other MV cargo influence the clotting cascade in multiple
ways [52, 111]. This is exemplified by the aforementioned
bleeding disorder, Scott syndrome, which is associated with
poor PS exposure and platelet vesiculation [25, 30, 52, 68,
111]. MV-related effects can also be a part or response to
certain anticoagulants [69]. It is noteworthy that MVs may
contain proteins with anticoagulant activity, such as TF
pathway inhibitor (TFPI) and activated protein C (APC)
[99, 112].

Nucleic acids: As mentioned earlier, MVs participate in
the intercellular exchange of several nucleic acid species
including DNA [19], mRNA [60, 71] and miRs [70, 73,
113]. The ‘packing’ mechanism responsible for the inclu-
sion of these molecules into MV cargo is poorly under-
stood, but there is considerable evidence for the biological
relevance of horizontal transmission of this cargo between
cells during processes of inflammation [70], cellular
differentiation [71], maintenance of the stem cell hierarchy
[11] and cancer [72]. For instance, endothelial cells have
been shown to respond to MV-mediated transfer of various
mRNA and miR species [72], which may promote
formation of vascular networks in cancer. Another capti-
vating experiment recently reported by Ratajczak et al.
employed pluripotent embryonic stem (ES) cells as a source
of nucleic acid containing MVs, which were incubated with
more lineage-restricted hematopoietic stem cells (HSCs)
[71]. In this case, the apparent transfer of mRNA triggered
profound reprogramming of HSCs to a more pluripotent
state, characterized by enhanced clonogenic growth and the
expression of genes associated with stemness, such as Oct4,
Nanog, Rex and others [71]. Vesiculation of ES cells has
also been explored as a mechanism mediating the transfer
microRNA to other cells [73].

Lipids include various bioactive species that represent
both structural and functional components of all MVs. One
of the best known examples of their horizontal exchange is
the transfer of arachidonic acid (AA) between activated and
resting platelets that results in the modulation of their
procoagulant responses [114]. Platelet activation is also at
the heart of procoagulant effects associated with MV-
mediated release of another lipid, known as platelet-
activating factor (PAF), e.g. from endotoxin-stimulated
neutrophils [74]. Interestingly, the transfer of PS from
vesiculating cells to erythrocytes was implicated in tagging
these cells for destruction by phagocytes [75].

Thus, vesicular transfer of several molecules emerges as
a relatively wide-spread process that may complement
intercellular communication by other mechanisms. One of
the most intriguing questions in this regard is how, and to

what extent, is this process involved in various forms of
cellular pathology. Of particular interest is the role of MVs
in cancer [18].

Oncogene-driven vesiculation—oncosomes

Cellular vesiculation is linked with cancer progression in at
least three major ways: through (a) distinct mechanisms of
MV generation, (b) cancer-specific MV properties and
content, and (c) involvement of MVs in multiple cancer-
related processes such as angiogenesis, migration, metastasis,
niche effects, and other events already alluded to in the prior
sections.

During malignant transformation, the action of mutant
oncogenes, such as K-ras, EGFR, or its constitutively active
mutant EGFR (variant III) (EGFRvIII), as well as several
others, appear to stimulate the formation and release of
MVs [61, 115]. Similarly, the activation or loss of specific
tumour suppressor proteins appears to impact cellular
vesiculation either positively or negatively [35, 115]. While
the exact nature of the signalling pathways involved in
oncogene-driven MV biogenesis remains largely unknown,
a handful of recent studies have begun to shed more light
on the underlying processes. For instance, in cultures of
prostate cancer cells, elevated MV (ectosome) production
was detected in association with increased oncogenic
activity of protein kinase B (PKB/Akt), or upon stimulation
with growth factors (EGF), and depending on the status of
the actin regulating protein known as diaphanous related
formin 3 (DRF3) [116]. In this case, inhibition of DRF3
expression through RNA interference enhanced the rate of
MV formation, and membrane blebbing activity, suggesting
that DRF3 may be an inhibitor of ectosome release [116].
Interestingly, DRF3 expression is lost during the progres-
sion of prostate cancer to metastatic disease, which suggests
an intriguing link between oncogenesis, vesiculation and
metastasis [116].

MV release by colorectal cancer cells is a function of K-
ras and p53 status [115]. A recent study links p53 activation
after the DNA damage, to the formation of secretory
exosomes containing several p53-regulated proteins [35].
This effect is mediated by the p53 target protein, tumour
suppressor-activated pathway 6 (TSAP6) [35]; mice lacking
this protein develop microcytic anaemia and signs of
abnormal reticulocyte maturation [76], which is consistent
with earlier studies implicating exosome formation with
erythropoiesis [40]. Another report has demonstrated that
vesiculation of LOX melanoma cells is controlled by a
cascade involving ARF6 GTP-ase, phospholipase D, Erk
and MLCK. This pathway triggers phosphorylation of
myosin light chain (MLC), which leads to MV production,
proteolysis, and increased cellular invasiveness [77].
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It is noteworthy that oncoproteins not only stimulate MV
formation but also become incorporated into their cargo [38,
61]. As a result, oncogene-containing MVs (oncosomes)
may serve as vehicles that carry oncogenic cargo and
mediate its transfer between cells [18]. At least four different
modes of such oncogenic transfer have been described: (a)
intercellular passage of active oncoproteins [61], (b) transfer of
oncogenic mRNA transcripts [72], (c) exchange of oncogenic
miR [78] and/or (d) passage of genomic sequences containing
oncogenic DNA [19]. In many instances, this horizontal
transfer may have marked biological (transforming) conse-
quences. Thus, oncosomes containing EGFRvIII may ema-
nate from malignant tumours cells and be taken up by their
indolent counterparts inducing their growth, survival, and
clonogenic and angiogenic capacity [61]. Oncosomes may
also act on endothelial cells and reprogram their responses
such that they exhibit an increase in angiogenic activity [72],
or switch to an autocrine mode of secretory pathway, e.g. by
turning on VEGF production [38]. Indeed, blocking onco-
some uptake using the Annexin V analogue (Diannexin) is
associated with a measurable anti-angiogenic effect in vivo
[38]. In chronic lymphoblastic leukaemia (CLL), oncosome-
like vesicles containing AXL kinase conditioned the bone
marrow stroma to support disease progression [43]. These and
similar effects identify oncosomes as possible effectors of
oncogenic and proangiogenic field effects, long postulated to
exist in cancer [18, 117] and viewed as a mechanism of cell
recruitment to the malignant process.

Translational implications of microvesicle generation,
shedding and transfer

The emerging intense interest in MV biology stems from
the realization that these particles are not just a ‘function-
less debris’, but rather represent a distinct biological
phenomenon of notable functional and translational impor-
tance in cancer. In this regard, there are at least two
important considerations. First, since different types of
MVs may contribute to cancer progression as mediators of
intercellular communication and ‘communal effects’, agents
that block MV shedding as well as MV interaction with
target cells and molecular transfer may possess hitherto
unsuspected anticancer properties [38].

Moreover, unique, cancer-specific, functionally impor-
tant cargo (molecular biomarkers) can be recovered from
MVs shed into blood stream and body fluids of cancer
patients. This includes certain effector proteins (e.g. TF),
oncoproteins (e.g. EGFRvIII), cancer-related transcripts and
miRs [55, 61, 68, 72, 118, 119]. Of particular interest is the
fact that MVs may preserve the functional state of cancer-
related proteins (e.g. their phosphorylation), which may
serve as a means to follow the effects of targeted anti-

cancer agents [55]. Thus, MVs represent an integral part of
both physiological regulation and disease pathogenesis, and
their exploration may inspire new therapeutic and diagnos-
tic approaches.
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