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Single cells are basic physiological and biological units that can function individually as well as in groups
in tissues and organs. It is central to identify, characterize and profile single cells at molecular level to be
able to distinguish different kinds, to understand their functions and determine how they interact with
each other. During the last decade several technologies for single-cell profiling have been developed and
used in various applications, revealing many novel findings. Quantitative PCR (qPCR) is one of the most
developed methods for single-cell profiling that can be used to interrogate several analytes, including
DNA, RNA and protein. Single-cell qPCR has the potential to become routine methodology but the
technique is still challenging, as it involves several experimental steps and few molecules are handled.
Here, we discuss technical aspects and provide recommendation for single-cell qPCR analysis. The
workflow includes experimental design, sample preparation, single-cell collection, direct lysis, reverse
transcription, preamplification, qPCR and data analysis. Detailed reporting and sharing of experimental
details and data will promote further development and make validation studies possible. Efforts aiming
to standardize single-cell qPCR open up means to move single-cell analysis from specialized research
settings to standard research laboratories.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. The promises of single-cell analysis

Organisms, organs and tissues are complexmixtures of cells and
extracellular molecules that together carry out all types of biolog-
ical functions. Cells can perform functions individually as well as
interacting with the surrounding microenvironment. They show
highly variable molecular profiles that respond to internal and
external stimuli making every cell unique. The cell's profiles are
also dynamic, adapting to the ever-changing microenvironment.
Thanks to recent technological advances to handle and analyze
single cells we now have the means to characterize all cell types,
their different states and start to decipher their functions. Omni-
omics, which is the measurement of multiple analytes in the
same cell is feasible. By characterizing all the cell types that make
up a tissue or organwewill learn about cell-to-cell interactions and
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how the cells act in concert to perform the complex biology of
organisms.
1.2. Pros and cons of qPCR

Quantitative PCR (qPCR) is one of the most versatile and
commonly appliedmethods in molecular biology and is available to
researchers in most biological and medical laboratories. Quantita-
tive PCR is also used in diagnostics to quantify biomarkers and to
detect pathogens. Many molecular biologists know how to design
and perform qPCR experiments, handle and evaluate data and set
up new applications, such as single-cell analysis. Numerous
detection technologies and instrumentations are available that can
be applied at single-cell level (Kubista et al., 2006). Single-cell qPCR
has been used in a wide range of applications, including insulin
producing beta cells (Bengtsson et al., 2005), the influence of
single-nucleotide polymorphisms on gene-expression phenotypes
(Wills et al., 2013), astrocyte activation (Rusnakova et al., 2013;
Ståhlberg et al., 2011), neuron activity (Liss et al., 2001), breast
cancer stem cells (Akrap et al., 2016), colon cancer stem cells
(Dalerba et al., 2011), cancer associated fibroblast activation (Busch
ects and recommendations for single-cell qPCR, Molecular Aspects of
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Table 1
MIQE checklist and additional single-cell items.

Item to check - MIQE Single-cell level

Experimental design Applicable
Sample preparation Partly applicable
Nucleic acid extraction Not applicable
Reverse transcription Applicable
qPCR target information Applicable
qPCR oligonucleotides Applicable
qPCR protocol Applicable
qPCR validation Applicable
Data analysis Partly applicable

Additional single-cell item to check

Single-cell collection and direct lysis
Preamplification target information
Preamplification oligonucleotides
Preamplification protocol
Preamplification validation
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et al., 2017), cell fate decision in stem cells (Guo et al., 2010; Narsinh
et al., 2011) and cell cycle regulation (Dolatabadi et al., 2017).
Compared to most other single-cell techniques the effort to move
from bulk to single-cell analysis is rather straightforward when
using qPCR. Regular assays and standard instrumentation may be
applied. Single-cell collection, preamplification and some modified
data analysis are the additional steps needed. An advantage of qPCR
is that DNA, all types of RNA and many proteins can be analyzed
even in combination, all generating Cycle of quantification (Cq)
readouts (Darmanis et al., 2016; Genshaft et al., 2016; Ståhlberg
et al., 2012; Tang et al., 2006). Another major advantage
compared to other single-cell technologies is that qPCR data anal-
ysis is well established and can be performed with standard qPCR
analysis software with no need for advanced bioinformatics and
writing of scripts (Ståhlberg et al., 2013a). Quantitative PCR can also
be used in combination with next generation sequencing (NGS)
taking advantage of the strengths of both technologies (Kroneis
et al., 2017). A limitation of qPCR is that only a limited number of
target molecules, usually 1 to 96, can be assessed in a workflow.
When the number of targets is larger other techniques such as NGS
are preferred. Quantitative PCR and NGS are related technologies,
since most NGS protocols include PCR (Gawad et al., 2016;Wen and
Tang, 2016). Hence, qPCR and NGS workflows share many experi-
mental features and limitations. Expression data measured with
NGS and qPCR correlate and the methods should be exchangeable
(Wu et al., 2014). In qPCR, each assay is optimized and theworkflow
is simpler, contributing to higher sensitivity and reproducibility
compared to NGS (Kroneis et al., 2017). Another advantage of qPCR
over NGS is standardized analysis workflow. Quantitative PCR data
can be analyzed by most non-specialists, while NGS data analysis is
still to be standardized and results may depend on the tools used,
the assumptions made and the particular analysis workflow. User
friendly analysis packages for non-experts are still few and have
limited functionalities. For most applications, qPCR is also more
cost-effective than NGS when considering all steps from sample
handling to analyzed data, even if the reagent cost per gene and cell
may be higher for qPCR. Quantitative PCR may also be substituted
by digital PCR in single-cell analysis (Albayrak et al., 2016; Ottesen
et al., 2006), but the cost per digital PCR is high and the throughput
is low with current platforms, limiting its use.

2. Single-cell analysis using qPCR

2.1. The single-cell qPCR workflow

The single-cell field is still characterized by methodology
development and biological proof-of-concept studies. Emerging
data show that single-cell analysis can provide vital information
about the cell that is not available when studying classical bulk
samples. However, for single-cell profiling to become amainstream
methodology it needs to be transparent and to some degree stan-
dardized. To date, few reports and biological findings in the single-
cell field have been verified in independent studies. A first step
towards standardizing single-cell analysis is to report the entire
experimental workflow in detail and make data publically avail-
able. This will make validation of results and confirmation of
findings easier.

Quantitative PCR is a rather mature technology and MIQE
(Minimum Information for publication of Quantitative real-time
PCR Experiments) guidelines are available for its use on classical
bulk samples (Bustin et al., 2009). Similar guidelines are also pro-
vided for digital PCR (Huggett et al., 2013). The goal of MIQE is to
provide the basis for good experimental practice and encourage
detailing protocols that allow for unbiased interpretation of qPCR
data. Most aspects of the MIQE guidelines are relevant for single-
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cell analysis, but some experimental steps need adjustments and
there are also some unique steps in single-cell analysis that must be
considered (Table 1). Table 2 shows the additional and adjusted
items that are specific to single-cell analysis.

Fig. 1 shows the workflow of single-cell qPCR analysis targeting
nucleic acids. Experimental details of single-cell protein analysis
have been detailed elsewhere (Darmanis et al., 2016; Genshaft
et al., 2016; Ståhlberg et al., 2012). Single-cell DNA analyses using
qPCR have been reported (Neves et al., 2014; Potter et al., 2013;
Rygiel et al., 2015; Ståhlberg et al., 2012; Yang et al., 2014), but
most single-cell studies so far has targeted RNA. The workflows for
RNA and DNA analyses are similar, except that the RNA workflow
requires a reverse transcription (RT) step, while the DNA workflow
requires opening of the chromatin structure. Sample handling with
cell dissociation and single-cell collection followed by direct lysis
are specific to single-cell workflows. Single cells can be collected
with several techniques, the most common being microaspiration,
laser microdissection, and flow cytometry. Major focus is currently
on throughput, where the introduction of droplet reaction con-
tainers has revolutionized the single-cell field (Ziegenhain et al.,
2017). Attention is also on spatial information, linking cells mo-
lecular profiles to their localization in tissues and organs (Lee et al.,
2014; Ståhl et al., 2016), and to specific compartments within the
single cell (Sindelka et al., 2008). Preamplification is another
common, but not an exclusive, single-cell step that is not discussed
in the MIQE guidelines. Finally, data analysis is also in many ways
unique for single-cell analysis. Carefully optimized protocols and
adequate controls are important in all experimental work. In
single-cell analysis the experimental setups are more challenging
as the numbers of target molecules are very few. Successful single-
cell workflows are characterized by efficient lysis and high reaction
efficiencies as well as minimal material losses.

2.2. Experimental design

When designing single-cell experiments one of the first ques-
tions that arises is how many cells should be analyzed. In classical
studies one sample per subject is usually collected, RNA is extracted
and analyzed (Fig. 2). If a single gene target is analyzed its
normalized expression in the studied groups is compared using
univariate statistics to assess the significance of the measured dif-
ference. If multiple targets are analyzed multivariate methods are
usually more powerful to classify the subjects. Technical replicates
may be performed, where replicates upstream in the workflow,
such as sampling replicates, reduce confounding variation more
than downstream, such as qPCR replicates (Tichopad et al., 2009).
ects and recommendations for single-cell qPCR, Molecular Aspects of



Table 2
Single-cell qPCR items to check.

Item to checka Item to check

Sample Preamplification oligonucleotides
Description Primer sequence and/or amplicon context sequence
Volume/mass of sample processed Database identification number (RDML, etc)
Microdissection or macrodissection Location and identity of and modification
Processing procedure Purification method
If fixed, with what and how Preamplification protocol
Tissue dissociation, with what and how Complete reaction conditions
Enzymes, buffer, kit catalogue no. and manufacturer Reaction volume

Evidence of dissociation optimization Primer, Mg2þ and dNTP concentrations
Evidence of cell quality Polymerase identity and concentrations
Biological and technical controls Buffer/kit catalogue no. and manufacturer

Single-cell collection and direct lysis Plates/tubes catalogue no. and manufacturer
Description of cell collection setup Complete thermocycling parameters
Evidence of single-cell collection optimization Reaction setup
Complete collection parameters Manufacturer of PCR instrument
Biological and technical controls Dilution of preamplified material
Manufacturer of single-cell collection instrument Preamplification validation
Complete direct lysis conditions Evidence of optimization
Lysis volume Specificity evaluated by downstream qPCR
Buffer, kit catalogue no. and manufacturer Calibration curves with slope

Storage of collected cells r2 of calibration curve
Preamplification target information Preamplification efficiency with confidence interval
Sequence accession number Linear dynamic range
Amplicon location Confidence interval throughout the range
In silico specificity screen (BLAST, etc.) Optimal number of preamplification cycles
Pseudogenes, retropseudogenes, or other homologes Evidence of level of detection and quantification
Secquence alignment Data analysisb

Secondary structure analysis of amplicon and GC content Handling of missing data
Location of each primer by exon or intron (if applicable) Description of preprocessing procedure
Where appropriate, which splice variants are targeted Description of normalization method

Cell inclusion/exclusion criteria

a For recommendations about experimental design, reverse transcription, qPCR target information, qPCR oligonucleotides, qPCR protocol and qPCR
validation we refer to the MIQE guidelines (Bustin et al., 2009).

b Recommendations in addition to the MIQE guidelines.

Fig. 1. Experimental steps in single-cell nucleic acids analysis using qPCR. Reverse transcription is performed when analyzing RNA. For protein analysis, reverse transcription is
exchanged with an antibody to antigen binding step.
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In single-cell analysis hundreds to several thousands of cells per
sample are analyzed for the expression of multiple genes. Multi-
variate methods are used to analyze these data too, but this time
cells are classified rather than the samples. The studied groups can
then be compared based on the number of cells from each subject
that are found in each of the different cell categories (Fig. 2). In
single-cell profiling technical replicates are omitted, as analyzing
more cells is statistically favorable than improving technical pre-
cision (Tichopad et al., 2009). Exception is when optimizing and
validating protocols; technical replicates are then useful to assess
reproducibility of the different experimental steps and compare
processing noise to biological variability. For optimized protocols,
cell-to-cell variability is normally much higher than the technical
variability (Bengtsson et al., 2008; Kroneis et al., 2017; Ståhlberg
and Kubista, 2014). The number of cells that needs to be analyzed
in an experiment depends on several biological and technical fac-
tors. Comparing numbers of defined cell types under various con-
ditions usually require fewer cells than when screening for novel
subpopulations with unknown expression characteristics.

2.3. Sample preparation

Sample preparation and single-cell collection are arguably the
most challenging steps in single-cell analysis. Quantitative PCR is
Please cite this article in press as: Ståhlberg, A., Kubista, M., Technical asp
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flexible and most sample preparation protocols and single-cell
strategies can be applied. Single-cell suspensions can be gener-
ated from tissues using enzymatic and/or mechanical methods.
Numerous protocols, including different enzymes and physical
disruption strategies have been described (Worthington Tissue
Dissociation Guide). However, very little data are available about
yield, reproducibility, viability and possible bias introduced by the
various tissue dissociation procedures. Tissues contain many
different cell types but also diverse extracellular material. Even
within a seemingly homogenous tissue the cell composition and
the surrounding matrix varies. This makes it very difficult to
develop dissociation protocols that allow for full characterization of
tissues. Therefore, detailed information about sample preparation,
any optimization performed, generated cell numbers, and cell
viability should be reported to facilitate for the community to
validate and improve tissue specific dissociation protocols, i.e., ev-
idence of dissociation optimization and cell quality (Table 2). To
determine if sample processing is unbiased the summed expression
of the individual cells should be compared to that of a classical bulk
sample (Ståhlberg et al., 2013b). Any deviation indicates there are
problems such as apoptosis, induced stress, bias in the collection of
cells, or that assays are amplifying also genomic DNA (Dzamba
et al., 2016). Validation is always desired and can be sometimes
be done with an independent technique, such as imaging and flow
ects and recommendations for single-cell qPCR, Molecular Aspects of



Fig. 2. Comparison between classical bulk and single-cell experimental design. In bulk analysis subjects are compared, while cell types/states are commonly compared in single-
cell analysis.
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cytometry. By staining cells for viability, apoptosis and cell type
specific markers sample handling and dissociation protocols can be
evaluated.

2.4. Single-cell collection and direct lysis

Setting up, establishing and validating a single-cell collection
approach is an effort that requires careful consideration (Hodne
and Weltzien, 2015). The total number of available cells and the
throughput are important parameters to consider when choosing a
platform for single-cell analysis. For example, fluorescence acti-
vated cell sorting (FACS) requires large numbers of cells to start
with, while microaspiration techniques can essential recover all the
viable cells, even if they are few. On the other hand, the total
number of cells that can be collected with microaspiration is usu-
ally low. If the cells of interest are rare, it may be possible to enrich
those based on markers, morphology or other cell specific features.
Another possibility to consider is to link the collected single cells to
their location in the tissue and take advantage of spatial hetero-
geneity. Laser microdissection preserves spatial information, but
usually requires fixation, which is associated with analyte loss and
degradation (Nichterwitz et al., 2016; Gründemann et al., 2011). It
may also be possible to trace the origin of the cell based on staining
or other cellular characteristics such as pigmentation that is linked
Please cite this article in press as: Ståhlberg, A., Kubista, M., Technical asp
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to spatial information (Sidova et al., 2015). In most high throughput
methods, such as those based on droplets, spatial information is
lost. The possibility to perform functional validation of living cells is
often overlooked when setting up single-cell experiments. This is
possible if the cell collection method can release viable cells.
Microaspiration techniques are often gentle and induce minimum
stress.

Many single-cell collection techniques are performed under
non-optimal culturing conditions for the cells. Information about
successfully collected cells, selection criteria and timing of the
experiment are therefore important parameters to consider when
interpreting data and should be reported. Controls are also moti-
vated if conditions are changed for sampling. For example, does the
molecular profile change with time or is it affected by other con-
founding experimental parameters? Information about collection
volume is important, as it may impact on downstream enzymatic
reactions and there is risk of contamination and inhibition from the
medium. The risk is particularly large when surrounding cells are
necrotic or apoptotic, leaking cellular material into the extracellular
medium. Negative controls containing no cell and positive controls
containing a spike or other standardized material, in the same
volume should be collected to estimate the influence of back-
ground. Even, when volume is low cells may be contaminated with
cellular material from other cells that is attached to their
ects and recommendations for single-cell qPCR, Molecular Aspects of
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membrane. This can be tested by spiking in intact viable cells from a
different species. Contaminatingmolecules can then be detected by
species-specific qPCR assays. For many collection techniques, the
capture mechanism takes advantage of certain cell features, such as
size, which can introduce sampling bias. For example, using FACS
large cells may be missed as they may be mistaken for being two
cells and therefore not collected. Microfluidic systems, like the C1
Single-Cell Auto Prep System (Pollen et al., 2014) and filtration
based systems such as the VyCAP (de Wit et al., 2015) also select
cells based on size. In fact, total unbiased single-cell collection
methods may not exist.

RNA is generally not extracted from intact single cells. Rather,
direct lysis is used with agents that make the molecules available,
protect them from adsorbing to reaction container walls, and are
compatible with downstream enzymatic reaction. This makes
washing steps that would cause losses unnecessary (Svec et al.,
2013). Cellular content may inhibit enzymatic reactions when
concentrations are high, which may happen when lysis volume is
small. For picoliter droplets this is often a problem, while for cells
lysed in microliter volumes there is rarely inhibition. Direct lysis
should disrupt the cell membrane and make the cytoplasmatic
analytes accessible. Some detergents also lyse the nuclear mem-
brane making its content available. Some cells, such Gram positive
bacteria, require tougher conditions (Wang et al., 2015). Also
mammalian cells show varying inertness to detergents and may
require particular lysis conditions. Non-ionic detergents like NP-40
and Triton X-100 lyse the cell membrane but not the nuclear
membrane of most cells, which can be used to purify RNA from the
cell nuclei (Krishnaswami et al., 2016). Stronger chaotrophic agents,
such as guanidine thiocyanate, lyse both membranes (Bengtsson
et al., 2008). Many direct lysis buffers are supplemented with
RNase inhibitors to minimize RNA degradation. For many single-
cell workflows, however, there is no noticeable degradation of
RNA by RNases. The reason is unclear; one speculation is that RN-
ases, which are primarily extracellular, are washed away during the
single-cell preparation with most protocols. When analyzing nu-
clear DNA, chromatin structure should be opened to make the
histone bound DNA available. Proteinases and strong denaturing
agents like guanidine thiocyanate can be used (Clark et al., 2017;
Guo et al., 2015; Leung et al., 2016). Proteinases are inactivated by
heat and/or inhibitors, but the very efficient proteinase K is rather
thermostable and difficult to inactivate completely. If strong de-
tergents are used they must be diluted not to inhibit downstream
enzymatic reactions. In bulk analysis, nucleic acids are commonly
purified by washing using a solid phase component like beads or
membranes used in micro spin-column. In single-cell analysis pu-
rification is rarely applied to minimize analyte losses and for cost
reasons (Svec et al., 2013).

2.5. Reverse transcription

For single-cell RNA analysis high RT yield and reproducibility are
essential. Compared to most NGS approaches, qPCR have few
constraints on the RT design. Essentially all conditions, including
several NGS specific RT protocols are compatible with qPCR
(Kroneis et al., 2017). The yield and reproducibility of RT depend on
the reverse transcriptase, primers, additives and the temperature
profile used (Ståhlberg et al., 2004a, 2004b; Ståhlberg and
Bengtsson, 2010) and is target sequence dependent due to sec-
ondary and tertiary structure formation. Using synthetic RNA
template the yield has been shown to vary between 0.4 and 100%
depending on conditions (Ståhlberg et al., 2004b), emphasizing the
importance of optimizing the RT reaction for sensitive measure-
ments, such as single-cell profiling.
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2.6. Preamplification

Analysis of many low abundant targets as is the case of single
cells requires multiplexing or preamplification to avoid introducing
sampling noise when the sample is divided into aliquots (Ståhlberg
and Kubista, 2014). Multiplex qPCR can be applied to quantify
several targets simultaneously by using different fluorophores
without diluting the samples. The advantage of multiplexing is that
it eliminates the need for preamplification that may introduce bias.
Drawbacks with multiplexing are that only few targets can be
analyzed and the multiplex reaction requires extensive optimiza-
tion. Preamplification workflows are therefore usually preferred.
For qPCR workflows target-specific preamplification is most com-
mon, where all primer pairs are mixed in a multiplex PCR and
amplified a limited number of cycles (Andersson et al., 2015; Livak
et al., 2013). The preamplification assays are usually the same as the
assays used in the downstream singleplex qPCRs, although nested
designs may be used (Genshaft et al., 2016; Wang et al., 2016).
Global preamplification can also be used (Kroneis et al., 2017).
Target-specific preamplification can be optimized for all the indi-
vidual assays, while when using global preamplification assays for
some targets will show poor performance and some targets may
even be non-amplified. Advantages of global preamplification are
convenience and flexibility as new targets can easily be added to an
ongoing study.

Preamplification is in effect a highly multiplexed PCR run a
limited number of cycles with reaction and thermocycling condi-
tions similar to that of standard singleplex PCR. Successful pre-
amplification is characterized by high yield and reproducibility as
well as small variation of amplification efficiencies across the in-
dividual target assays. Target-specific preamplification is usually
performed with 10e20 times lower primer concentrations than
singleplex qPCR, with extended annealing time (3 min or more).
The number of preamplification cycles is critical, as it depends on
the initial number of target molecules, number of assays included,
dilution factors and the singleplex qPCR reaction volume
(Andersson et al., 2015; Livak et al., 2013). If too many pre-
amplification cycles are performed the reaction will run short of
some critical components introducing severe bias. If a highly
abundant target, such as ribosomal RNA, is included in the pre-
amplification it will not affect the general amplification of low
abundant genes, since the preamplification primers of the ribo-
somal RNAwill be consumed before the reaction runs out of dNTPs.
Therefore, only abundantly expressed molecule may become
confounded (Andersson et al., 2015). For most single-cell mRNA
protocols 20 preamplification cycles will generate enough ampli-
cons even for the BioMark 96x96 dynamic array, which employs
reaction volumes of only 7.5 nL. In single-cell DNA preamplification,
additional cycles may be used since most targets are present in few
copies only. Twenty-two preamplification cycles is usually enough
in most cases.

Like PCR preamplification is quantitative in its exponential
phase. Therefore, preamplification can be monitored in real-time
using a DNA intercalating dye, such as SYBR Green I the same
way as qPCR, to reveal the maximum number of cycles that can be
performed without problem (Fig. 3). The performance of the indi-
vidual assays can be testedwith downstream singleplex qPCR using
dilution series to determine sensitivity, dynamic range, pre-
amplification efficiency, and reproducibility (Andersson et al., 2015;
Rusnakova et al., 2013). Bias may be introduced during pre-
amplification if the reaction is not carefully optimized as even small
deviations in efficiency can cause large quantitative errors. The
standard MIQE recommendations for qPCR (Bustin et al., 2009) are
applicable also for preamplification and are listed in Table 2.
ects and recommendations for single-cell qPCR, Molecular Aspects of



Fig. 3. Real-time monitoring of preamplification. To determine the optimal number
of preamplification cycles fluorescent dyes, like SYBR Green I, can be included in the
reaction to monitor the PCR product formation. Here, target-specific preamplification
of 96 assays is shown using 100 copies of each target, more than usual observed in
single cells (Andersson et al., 2015). The preamplification reaction should not exit its
exponential growth phase to avoid technical biases, i.e., around 18 cycles in this
example.
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2.7. Quantitative PCR

Our recommendations for singleplex qPCR performed after
preamplification to quantify targets are in line with the MIQE
guidelines (Bustin et al., 2009). For accurate quantification the as-
says should be exceedingly sensitive and specific, since often even
single molecules should be detected. Our experience is that the
sensitivity and specificity of many assays that perform well on
traditional samples with more than some 100 target molecules are
not good enough when only few target molecules are present. As a
rule of thumb assays that generate non-specific primer-dimer
products within 30e35 cycles on a conventional qPCR instrument
are not suitable for single-cell analysis. Sensitive and robust PCR
assays should also have efficiencies over 90%. Details about general
qPCR challenges, including estimation of cycle of quantification and
PCR efficiency, are discussed elsewhere (Kubista et al., 2006; Ruijter
et al., 2013; Spiess et al., 2015, 2016; Ståhlberg and Bengtsson, 2010;
Ståhlberg and Kubista, 2014; Svec et al., 2015; Tellinghuisen and
Spiess, 2014).

Single-cell qPCR experiments are sensitive to contamination,
since most targets are very rare. Negative controls can be intro-
duced at each critical experimental step (Fig. 1) to test for
contamination. A practical approach is to include cell-free controls
at the cell collection step. If these come out negative it shows the
cell medium, direct lysis buffer and reagents are not contaminated.
Background in RT-qPCR analysis of RNA can also be due to ampli-
fication of residual genomic DNA. Evenwhen assays are designed to
span introns DNA contamination can give rise to background, as
many genes have pseudogenes and pseudogenes often lack introns.
In human, over 14,000 pseudogenes exist and the number of
pseudogenes can be large for a given target (Karro et al., 2007; Pei
et al., 2012). Also, for many targets assays spanning introns cannot
be designed or the intron is too short to make amplification of
genomic DNA negligible. To eliminate DNA background samples
can be treated with DNase, preferably heat-labile double-strand
specific nuclease to avoid introducing washing steps. Another
strategy is to determine the degree of genomic DNA background
using the ValidPrime assay and correct for it (Laurell et al., 2012).

Other potential sources of contamination are reagents and re-
action mixes used. There is rarely any information about DNA and
RNA contamination of reagents from the manufacturers, but we
consistently observe amplification products using sensitive human
assays, especially for highly abundant targets such as Alu repeats
Please cite this article in press as: Ståhlberg, A., Kubista, M., Technical asp
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and mitochondrial DNA. Most reagents can be cleaned-up from
double-stranded DNA using double-strand specific DNase (Andini
et al., 2017; Krüttli et al., 2015).

2.8. Data analysis

Single-cell gene expression data analysis workflow is in many
aspects the same as for classical samples, but there are some
important differences. Profiling single cells the amount of missing
data is considerable because of the temporal changes in RNA levels
that occur due to transcriptional bursting (Chubb et al., 2006; Raj
et al., 2006). Consequently, at any given time, for low expressed
genes, there will be no target molecules present at all in many of
the cells (Dzamba et al., 2016). Those missing data are correctly
referred to as off-scale data, as they have biological origin rather
than being due to technical error and should be handled differently
(de Ronde et al., 2017; McCall et al., 2014; Ståhlberg et al., 2013a).
Off-scale data due to too low expression can usually be distin-
guished from missing data caused by technical errors by correla-
tions to the levels of other targets. In practice, using optimized and
validated protocols, technical failures that affect just one or few
genes in a cell are rare and all missing data can be considered being
off-scale. In comparative studies the number of missing data scales
inversely with the average expression across single cells and the
expression in bulk (Ståhlberg et al., 2013b; Dzamba et al., 2016).
Highly expressed genes like GAPDH are usually expressed in almost
all cells, while transcripts from low expressed genes are detected
only in a minority of the cells.

In single-cell analysis negative controls are essential. As most
genes have transcripts in only a fraction of the cells, even few
contaminating target molecules can introduce severe bias. Effect is
particularly serious if the contamination is introduced before the
preamplification step, as it will be amplified. In single-cell work-
flows it is common that cells are lost or damaged. If a cell generates
few or no molecules in readout it is probably a technical failure.
However, there are quiescent cells expressing few genes only, and
there may also be pre-apoptotic cells with few transcripts. In a new
experiment, it is not possible to tell if a cell with low transcript
levels is an unusual cell or a technical failure and both options
should be considered in downstream analysis, where correlations
of transcript levels, expression patterns, gene function and pathway
analyses may reveal the nature of those cells. Whatever strategy
used, we recommend that the total number of cells collected and
the number of cells used in the analysis are reported together with
the applied selection criteria. Many single-cell publications lack
information about negative controls and inclusion and exclusion
criteria for the individual cells in analysis, making it hard for
readers to grasp the complexity of the study and it makes it also
impossible to reproduce it.

Analyzing traditional samples, comparison of gene expression
profiles requires data to be normalized. Several normalization
strategies exist, with normalization to multiple reference genes
beingmost widely used (Andersen et al. et al., 2004; Vandesompele
et al., 2002). Reference gene normalization is, however, not appli-
cable to single-cell data, as no RNA (nor protein) is present at
constant level due to temporal variations. However, this is rarely a
problem as expression data are conveniently reported per cell,
which is a natural and intuitive mode of normalization (Bengtsson
et al., 2005). Single-cell expression levels are usually reported as
relative quantities per cells, but data are also related to absolute
transcript numbers as the workflow has negligible losses when
based on direct lysis (Ståhlberg and Bengtsson, 2010). However,
some special analyses require that cells or transcripts are normal-
ized to define subpopulations of cells and identify gene networks
(Livak et al., 2013; Ståhlberg et al., 2013b). Therefore, reports should
ects and recommendations for single-cell qPCR, Molecular Aspects of
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detail data preprocessing as well as the analyses performed. We
also encourage making single-cell data publically available, as it
will simplify validation studies and serve as a robust reference to
the less easily controlled global RNA-Seq approaches. Handling
single-cell DNA and protein data additional preprocessing steps
may be required. For example, in single-cell protein analysis
negative controls show a background signal that must be consid-
ered (Darmanis et al., 2016; Genshaft et al., 2016; Ståhlberg et al.,
2012).

3. Concluding remarks

Single-cell analysis using qPCR opens up new avenues to
address numerous biological questions that cannot be resolved
with bulk analysis. The experimental workflow is robust, flexible
and can be implemented by most research laboratories. The MIQE
guidelines have facilitated the use of qPCR with its recommenda-
tions and guidelines including how to report data and results to
scientific journals, and they are very much applicable also to single-
cell analysis. However, some aspects of single-cell work are
different to bulk analysis and require attention. They are:

� Most single-cell approaches require cell dissociation, which is
challenging as it is often associated with harsh treatments to
generate single-cell suspensions.

� Important parameters in single-cell collection are throughput,
spatial information, cellular stress caused by the collection
method and any enrichment performed based on cell
morphology, size or staining.

� Single cells are typically direct lysed avoiding purification pro-
tocols. Good direct lysis buffer maximizes the analyte concen-
tration available and is compatible with downstream
experimental steps.

� For most single-cell applications, nucleic acids must be pre-
amplified to enable accurate quantification. Preamplification
can be target specific or global.

� Expression data are presented per cells rather than normalized
to the expression of reference genes.

� The amount of missing data is high and primarily caused by low
expression rather than having technical failures. Those missing
data are referred to as off-scale data and must be imputed for
most multivariate analyses.
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